1 / 12

Advanced Algorithmic Graph Theory Course Guide

Explore st-ordering, graph decompositions, representations, and special graph classes with implications. Textbooks and presentation requirements. Presentation and paper schedule included.

cmcnulty
Download Presentation

Advanced Algorithmic Graph Theory Course Guide

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. u n V t = 16 8 13 V 14 7 12 V 15 11 6 V 10 5 4 9 8 5 V 4 6 3 V 2 V 7 3 2 u u 2 1 s = 1 V 1 21 20 18 19 17 15 12 14 16 11 13 10 9 8 6 7 3 5 4 2 1 CSE 6410 Advanced Algorithmic Graph Theory

  2. Course Contents • Vertex Orderings: st-Numbering and Canonical Orderings; • Graph Decompositions and Their Algorithmic Applications: Ear Decomposition, Canonical Decomposition, Tree Decomposition, Path Width and Tree Width, PQ-tree, SPQR-tree, Split Decomposition, Recursively Decomposable Graphs, Clique Separator Decomposition; .

  3. Course Contents • Graph Representations: Implicit Representations, Intersection and Containment Representations; • Graph Classes Defined by Forbidden Subgraphs; • Graph Classes Defined by Elimination Schemes; Classes of Graphs with Bounded Treewidth and Their Algorithmic Implications; • Characterization, Construction and Recognition Algorithms for Some Special Classes of Graphs.

  4. Text Books • T. Nishizeki and M. S. Rahman, Planar Graph Drawing, World Scientific, Singapore, 2004. • J. P. Spinrad, Efficient Graph Representations, American Mathematical Society, 2003. • Results from Journals

  5. Fundation • M. S. Rahman, Basic Graph Theory, Springer, 2016 (to appear).

  6. Marks Distribution • Attendance 10 • Presentation 15 • Review Paper Writing 15 • Compilation of two class lectures in Latex 10 • Examination 50

  7. Presentation Two Students in a Group Choose a paper on any topic in the course content published in a reputed journal or conference proceedings. Show me the paper and take my approval. You have to read, understand and present the paper. Use PowerPoint /Beamer for presentation.

  8. Presentation Format • Problem definition • Results of the paper • Contribution of the paper in respect to previous results • Algorithms and methodologies including proofs • Future works, open problems and your idea

  9. Presentation Schedule • Presentation time: 20 minutes • Presentation will start from June 5, 2016.

  10. Paper Writing Two Students in a Group Choose a topic from the course content. Write a survey paper for getting at most 85% marks of the item. You need to add some new results to get full marks. Use LaTex for writing the paper. Reporting of Topic: June 26, 2016 (5 min presentation) Submission Deadline of preliminary version: July 31, 2016. Final Submission: September 04, 2016 (A hard copy with all source files in a CD)

  11. Compilation of Class Lectures Each student will compile my class lectures one topic using LaTex (I will assign) . You need to add necessary figures for illustration. Xfig or Latexdraw is recommended for drawing figures.

  12. Thank You

More Related