630 likes | 696 Views
AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA.
E N D
AUKSOSTAAT-AKSELEROSTAAT-TEHNOLOOGIA Klassikalised fermentatsiooniprotsessid toidutööstuses on perioodilised. Pidevprotsesside rakendamine on olnud seni väheedukas, kuna need ei taganud vajalikku kvaliteeti ja olid saastumistundlikud. Auksostaattehnoloogia võimaldab aga protsesside mikrobioloogilise saastuse probleemid edukalt lahendada, paranda toidu kvaliteeti, luua uusi tooteid ja optimeerida protsesse
Akselerostaat-tehnoloogia laboratoorsed rakendused • Tööstuslike protsesside optimeerimine • Mikroobide iseloomustamine • Söötmete väljatöötamine • Mikroobifüsioloogia uurimine • Mikroobide selektsioon • Metaboolika
Cultivation methods • Batch • Chemostat • Accelerostat (A-stat) • D-stat • Turbidostat/auxostat • Auxo-accelerostat • Fed-batch • m-stat (substrate limited fed-batch)
Si Fed-batch ehk juurdevoolukultuur Batch sööde sööde raku-kultuur rakud Läbivoolukultuur Kasvatamismeetodid
Batch culture lnX YXS=dX/dS tana=m=dX/dt/X TIME (h)
Läbivoolukultuur • Kontrollitakse lahjenduskiirust (D) • Kemostaat, hoitakse D-d ja keskkonna tingimusi konstantsena • A-staat, muudetakse lahjenduskiirust sujuvalt • D-staat, muudetakse keskkonna tingimusi sujuvalt • Kontrollitakse biomassi kontsentratsiooni • Turbidostaat (kostantne hägusus) • pH-auksostaat (konstantne pH) • CO2-auksostaat • pO2-auksostaat Kui kasutatakse sujuvat kasvutingimuste muutmisest nimetatakse meetodit aukso-akselerostaadiks
Chemostat • The most precise method of culture characterization • The steady-state can be obtained keeping D and T, , air, SFEEDetc. constant • D=feeding rate/culture volume (1/h) • The culture characteristics m=D; YXS=(SFEED- S)/X
Steady-state • the culture conditions in which X, Si, Pi, YXS, pH, pO2, T, V, biomass composition etc. are constant • the biomass concentration,not changing in time span of observation shows, usually that steady-state is achieved in chemostat .
X ace glc g/l g/l g/l 5.0 5.0 5.0 X glc 4.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 ace 1/h 0 0 0 0 0.10 0.20 0.30 0.40 0.50 Dilution rate D = m Chemostat culture of E. coli glucose (10 g L-1), T=30 oC, pH=6.6 mmax=0.39 h-1
The reasons for development of accelerostat • Significantly slower growth rate in chemostat than in batch culture • Long time and big amounts of media are required to obtain the chemostat curves • Oscillations after the step-wize change of D can occure in chemostat • Development of computer controlled cultivation systems
FermExpert BioXpert • First Microsoft Windows based cultivation soft-ware for fermentation control (1992) • The program enabled • to program the behavior of cultivation parameters and • on-line calculation of the culture parameters using differential equations • Possibility to change the dilution rate smoothly.
Chemostat based methods • Accelerostat (A-stat) • D-stat (a=0) • T, Si, pH, pO2 • Fed-batch with changing culture volume (quasi-steady-state culture)
Auxostat (turbidostat) • The biomass concentration can be kept constant by feed-back control of • Optical density OD • pH • Dissolved oxygen concentration pO2 • Oxygen concentration in exhaust gas O2 • CO2 concentration in exhaust gas etc. by dilution rate D. For steady-state culture there may be no difference as set-point can be adjusted to desired biomass concentration X
Feed-back control in auxostat Auxostat PUMP1 PUMP2 IF Z>Zs THEN PUMP1=HIGH ELSE PUMP1=LOW IF V>Vset THEN PUMP2=ON ELSE PUMP2=OUT X, pH, pO2 V Chemostat PUMP1 = constant
pmp D T 1/h 25 0.75 70 D 20 0.60 60 15 0.45 50 T 10 0.30 40 5 0.15 30 pmp hours 0 0 20 0 4 8 12 16 20 time Obtaining steady-state in pH-auxostat
Experimental strategy of auxo-accelerostat • The steady-state is obtained by keeping cultivation conditions Y {Tset, pHset, Vset, feeding medium composition etc.} controlling biomass concentration X= g * Z at desired level • One of the culture parameters (T, S, I etc.) is changed at constant rate
pH-auxo-accelerostat of S. cerevisiae with increase of biomass concentration
Effect of biomass concentration • Usually no direct effect • Indirect effect • Growth promoting compounds • Growth inhibiting compounds • Primary metabolites • Secondary metabolites • Toxins
Auxostat methods • Turbidostat • pH-auxostat • pO2-auxostat • CO2-auxostat • T-auxostat • Ethanol-auxostat
pH-auxoaccelerostat • Advantages • Very sensitive to change of biomass concentration, • Well proportional to biomass concentration • Technically simple and reliable • Disadvantages • Affected by change of pH in the feeding • Complicated in studies of pH effect
Strain characterization Determination of culture characteristics of different LAB in pH-auxo-accelerostat
Determinations of growth characteristics of Saccharomyces cerevisiae • Effect of biomass • Effect of ethanol • Effect of propanol • Effect of temperature • Effect of oxygen • Effect of yeast extract • Effect of pH • Effect of salt
CO2-auxo-accelerostat • CO2concentration is proportional to X and growth rate • Advantages • Not affected by pH of the feeding medium • Good sensitivity and precision • Disadvantages • Solubility of CO2 affects the concentration • Delay in measurements • Significant change in biomass concentration complicates interpretation of results
pO2-auxostat • Allows to keep biomass concentration at desired level determined by the stirrer speed, aeration rate etc. • Difficult to use in case of low oxygen consumption
T-auxostat • Very perspective in industrial scale • Heat production is proportional to biomass production • Both T of the fermentation medium and DT of cooling water can be used as set-point
Auxostat with change of culture volume • Biomass with maximum activity is required repeatedly for carrying out • Infection experiments • Physiologic studies • Food fermentations • To obtain the steady-state culture using minimum amount of culture media
Determination of growth rate in auxo-accelerostat vIN vOUT VFEED VOUT,X Z L Balance V, X, pH, pO2 Stirrer control Dilution rate m = (dVOUT/dt + dV/dt)/V+ d(X*V)/dt)/(X*V)
Application of the new methods in food technology Auxostat – can be used to improve the performance of food fermentation processes D-stat and accelerostat – optimization on fermentation conditions for biomass production Auxo-accelerostat – culture characterization
Principle possibilities of application of auxostat in food fermentations • Two tank processes • Continuous auxostat culture • Batch maturation • One tank processes • Auxostat with changing culture volume (tank filling) • Batch maturation
BIOXPERT pump=low pH Värske toore pHSET pump=high pump ARVUTI pH, pO2, T, V, str Si, Pi KONT-ROLLER Järel-valmimine Two tank auxostat process