1 / 10

a 2 +b 2

y. sin ( θ+α). asin θ+ bcos θ =. a 2 +b 2. P( a , b ). b. r. α. r =. x. a. O. a 2 +b 2. sin ( θ+α). a 2 +b 2. =. 三角関数の合成. b = rsin α. a = rcos α. 左辺 = rcos α sin θ+ rsin α cos θ. = r ( cos α sin θ+ sin α cos θ). 加法定理. = rsin (θ+ α). スマート!. だけど・・・. 基本の計算.

Download Presentation

a 2 +b 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. y sin(θ+α) asinθ+ bcosθ = a2+b2 P(a,b) b r α r = x a O a2+b2 sin(θ+α) a2+b2 = 三角関数の合成 b = rsin α a = rcos α 左辺 = rcosαsinθ+ rsinαcosθ = r(cosαsinθ+ sinαcosθ) 加法定理 = rsin(θ+α) スマート! だけど・・・

  2. 基本の計算 斜辺 r と 角度θ から 高さ と 底辺 を求める r rsinθ θ rcosθ 斜辺 r と角度θを測れば、三角比の表を使って、高さと底辺を計算できる

  3. d 幅を測ろう 60° 1 図のような三角定規を使って幅dを測ってみよう 使える道具・・・この三角定規と分度器と三角比の表

  4. 15° 3cos15° d 15° d = 1sin15°+ 3cos15° 幅を測ろう 1 60° 1sin15° 三角比の表より cos15°= 0.96593 sin15°= 0.25882 だから d = 1.93186

  5. 2sin ( 15°+ 60°) d 幅を測ろう 2 60° 15° d = 2sin ( 15°+ 60°) = 2sin 75° 三角比の表より だから d = 1.93186 sin75°= 0.96593

  6. = 2sin ( 15°+ 60°) 1sin15°+ 3cos15° 幅を測ろう 一般化しよう 三角関数の合成の公式をつくる

  7. d b α a 幅を測ろう 直角三角形を使って幅dを測ろう

  8. d θ θ 幅を測ろう bcosθ b a α asinθ d = asinθ+ bcosθ

  9. sin (θ+α) d a2+b2 a2+b2 a2+b2 d = sin (θ+α) 幅を測ろう α θ

  10. asinθ+ bcosθ= a2+b2 sin (θ+α) a2+b2 b a α θ 三角関数の合成

More Related