1 / 44

Continuous Regression Analysis – Session 6

Chair of Business Administration esp. Information Management Prof. Dr. Wolfgang König Johann Wolfgang Goethe University. Continuous Regression Analysis – Session 6. Data Collection and Data Analysis in Information Systems Research Ph.D. Seminar Presentation Martin Wolf (09.05.2008)

cole
Download Presentation

Continuous Regression Analysis – Session 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chair of Business Administration esp. Information Management Prof. Dr. Wolfgang König Johann Wolfgang Goethe University Continuous Regression Analysis – Session 6 Data Collection and Data Analysis in Information Systems Research Ph.D. Seminar Presentation Martin Wolf (09.05.2008) Supervisor: Dr. Oliver Hinz

  2. Agenda (Session 7) 09.05.2008 Slide 2/44

  3. Agenda (Session 7) 09.05.2008 Slide 3/44

  4. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Agenda (Part I) 1. Goals of Regression Analysis 2. Underlying Assumptions 3. Exemplary Regression Analysis (SPSS) • Summary • Questions 09.05.2008 Slide 4/44

  5. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Agenda (Part I) 1.Goals of Regression Analysis 2. Underlying Assumptions 3.Exemplary Regression Analysis (SPSS) • Summary • Questions 09.05.2008 Slide 5/44

  6. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Goals of Regression Analysis • Examines the linear dependency between one (bivariate regression) or more (multiple regression) independent variable(s) and one dependent variable (explanatory approach) • Application of least squares method to minimize error between sample data and linear model • Domain of Interest: analysis of time series, prediction of causal relationships, root cause analysis (e.g. individual differences – computer skill) (regression function) 09.05.2008 Slide 6/44

  7. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Least Squares Method (Source: Skiera 2005) 09.05.2008 Slide 7/44

  8. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Regression Results • Regression coefficients • R²: Goodness of Fit • F-Ratio: Significance of the overall model • T-test: Significance of the regression coefficients 09.05.2008 Slide 8/44

  9. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Agenda (Part I) 1. Goals of a Regression Analysis 2.Underlying Assumptions 3.Exemplary Regression Analysis (SPSS) • Summary • Questions 09.05.2008 Slide 9/44

  10. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Underlying Assumptions (I) • Linear dependency between independent variables and dependent variable • Dependent and independent variables have to be provided at metric level (except dummy variables) • Independent variables have to be uncorrelated (nomulticollinearity)-> Collinearity Statistics, Tolerance >=0,1-> Correlation Matrix • Residuals have to be uncorrelated (noautocorrelation)-> Durbin-Watson-Coefficient ≈ 2 09.05.2008 Slide 10/44

  11. Part I: 1. Goals 2. Assumptions 3. Exemplary Regression Analysis 4. Summary Underlying Assumptions (II) • Residuals have to follow a normal distribution-> Kolmogorov-Smirnov Test-> Plots (normality, histogram)-> n>50 -> central limit theorem • No heteroscedasticity of the residuals-> e.g. White‘s general test for heteroscedasticity -> Plot (standardized residuals against stardardized predictors) • Data set has to represent a random sample • No outliers (check DFBETA, standard deviation as distance measure) 09.05.2008 Slide 11/44

  12. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Agenda (Part I) 1. Goals of Regression Analysis 2. Underlying Assumptions 3.Exemplary Regression Analysis (SPSS) • Summary • Questions 09.05.2008 Slide 12/44

  13. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Exemplary Regression Analysis • Example Data Set: Consequences of a reduction of work time per week from 40 to 38,5 hours within 80 industries in Baden-Wurttemberg (1985) • Research Question: How does a change in work time influence the employment? • Variables: 09.05.2008 Slide 13/44

  14. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Syntax File * Compute Linear Regression, Save Standardized Residuals. * Calculate Durbin-Watson Coefficient (Check for autocorrelation). * Calculate Collinearity Statistics (Check for multicollinearity). * Generate P-P Diagramme (Check for heteroscedasticity). * Display Model Summary. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA COLLIN TOL /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT av85.10 /METHOD=ENTER uv85.10 stv85.10 azv /SAVE ZRESID /RESIDUALS DURBIN HIST(ZRESID) NORM(ZRESID) /SCATTERPLOT=(*ZRESID ,*ZPRED ). * Kolmogorov-Smirnov Test of Residuals. * (Check if residuals follow a normal distribution). NPAR TESTS /K-S(NORMAL)=ZRE_1 /MISSING ANALYSIS. 09.05.2008 Slide 14/44

  15. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 15/44

  16. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 16/44

  17. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 17/44

  18. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 18/44

  19. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 19/44

  20. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary SPSS Output File 09.05.2008 Slide 20/44

  21. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Agenda (Part I) 1. Goals of Regression Analysis 2. Underlying Assumptions 3.Exemplary Regression Analysis (SPSS) 4.Summary 09.05.2008 Slide 21/44

  22. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Summary • Regression Analysis is a means of root cause analysis and prediction, if linear dependency can be assumed • Requires an extensive random sample for a significant model(at least independent variables * 5) • Strict assumptions have to be fullfilled 11.02.2008 Folie 22/44

  23. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Literature • Cohen, Jacob; Cohen, Patricia; West, Stephen G.; Aiken, Leona S. (2003): Applied Multiple Regression/ Correlation Analysis for the Behavioral Sciences, 3rd Edition. Lawrence Erlbaum Associates, Publishers, New Jersey, USA. • Backhaus, Klaus; Erichson, Bernd; Plinke, Wulff; Weiber, Rolf (2003): Multivariate Analysemethoden, 10. Auflage. Springer Verlag, Berlin Heidelberg, Germany. • Chatterjee, Samprit; Hadi, Ali S.; Price, Bertram (2000): Regression Analysis by Example, Third Edition. John Wiley & Sons, Inc., New York, USA. • McClendon, MCKee J. (2002): Multiple Regression and Causal Analysis. Reissued by Waveland Press, Inc., Prospect Heights, Illinois,USA. 09.05.2008 Slide 23/44

  24. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Literature • Brosius, Felix (2006): SPSS 14. Das mitp-Standartwerk. Redline GmbH, Heidelberg, Germany. • Schnell, Rainer; Hill, Paul B.; Esser, Elke (1999): Methoden der empirischen Sozialforschung, 6. Auflage. R. Oldenbourg Verlag, München, Germany. 09.05.2008 Slide 24/44

  25. Part I: 1. Goals2. Assumptions 3. Exemplary Regression Analysis 4. Summary Questions/Discussion ? 09.05.2008 Slide 25/44

  26. Agenda (Session 7) 09.05.2008 Slide 26/44

  27. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3. Utilized Model • Results • Summary (Pros and Cons) • Questions 09.05.2008 Slide 27/44

  28. Part II: 1. Background 2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 28/35

  29. Part II: 1. Background 2. Research Question 3. Utilized Model 4. Results 5. Summary Background • Introduction of a vessel traffic service (VTS) for the lower Mississippi in late 1977 in order to prevent rammings and collisions of vessels • VTS is an example of a Decision Support System (DSS) • Literature: utilization surrogate of success, only measured as dichotomous variable, no consistent results 09.05.2008 Slide 29/35

  30. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2.Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 30/44

  31. Part II: 1. Background 2. Research Question 3. Utilized Model 4. Results 5. Summary Research Question Is there a linear causalrelationshipbetween DSS Usageand System Performance(lessvesselaccidents)? 09.05.2008 Slide 31/44

  32. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 32/44

  33. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Utilization as an Intervening Variable Backward Linkages Forward Linkages (Source: Trice and Treacy 1988) 09.05.2008 Slide 33/44

  34. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Utilized Linear Regression Model 09.05.2008 Slide 34/44

  35. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 35/44

  36. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Model Summary ** p<0,01; * p<0.05 09.05.2008 Slide 36/44

  37. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Results • Significant negative correlation of DSS utilization, length of DSS Use with objective performance criterion (number of vessel accidents) 09.05.2008 Slide 37/44

  38. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 38/44

  39. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Pros • Objective justification of DSS introduction(IT is an enabler) • Utilization of a broad model • Relatively high fit of the model • High significance of the model 09.05.2008 Slide 39/44

  40. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Cons • No exact specification of the used dimensions of the coefficients (-> standardized coefficients) • Peak utilization was aggregated for DSS usage • No specification how weather indicator was derived • Assumptions were not addressed • Momentum already showed decreasing trend 09.05.2008 Slide 40/44

  41. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Literature • Blanc and Kozar (1990): An Empirical Investigation of the Relationship Between DSS Usage and System Performance: A Case Study of a Navigation Support System. In: MISQ, 14(3), pp. 263-277. 09.05.2008 Slide 41/44

  42. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Agenda (Part II) 1. Background 2. Research Question 3.Utilized Model • Results • Summary (Pros andCons) • Questions 09.05.2008 Slide 42/44

  43. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Questions/Discussion ? 09.05.2008 Slide 43/44

  44. Part II: 1. Background2. Research Question 3. Utilized Model 4. Results 5. Summary Thank you very much for your attention! 09.05.2008 Slide 44/44

More Related