1 / 22

Magnetic CVs in the XMM-Newton Era: the Intermediate Polars

This study explores the evolutionary link between Polars and IPs and the role of MCVs in the population of Galactic X-ray sources, using results from XMM-Newton. It investigates questions about the evolution of IPs towards synchronism and the magnetic field strengths in IPs.

collinsm
Download Presentation

Magnetic CVs in the XMM-Newton Era: the Intermediate Polars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MagneticCVs in the XMM-Newton Era: the Intermediate PolarsD.de Martino INAF-Osservatorio Astronomico di Capodimonte Napoli & G.Anzolin, J.-M.Bonnet-Bidaud, M.Falanga, B.Gaensicke, F.Haberl, N.Masetti, G.Matt, M.Mouchet, K.Mukai

  2. Outline Open questions: • Evolutionary link betweenPolars and IPs • RoleofMCVs in PopulationofGalacticX-raySources • Roleoffundamentalparameters in accretion and emissionproperties Results from XMM-Newton: • Increased IP membership • New X-ray properties: commonalities with Polars

  3. Questions on MCV Evolution MCVs ~20-25% of all CVs vs MWDs~10% of all WDs RK v.7.10 (2008) ~50% ~40%

  4. Candidates increased by 50% in last 4yrs (see Koji Mukai’s IP Web Site) MCV Class Census:PolarsIPs Pre-Rosat 18 (60%) 12 (40%) Post-Rosat 55 (70%) 25 (30%) Today 94 (54%) 78 (46%) QUESTION • Do IPs evolve towardssynchronism? • Do IPsharbourlower B fieldWDs? ~70% ~80%

  5. What about B field strengths in IPs? Most IPs lie below synchronization line On average lower B field systems that may evolve towards synchronism SystematicSurvey in Polarized light stillmissing! • Polarimetric UBVRI surveyrecentlystarted @ NOT (Katajainenet al. 2007; Butterset al. 2009) • Spectropolarimetriy @ ESO/VLT attemptedbutlargeoversubscription! Polars: Beuermann (2000) IPS: Butters et al. 2009 V405 Aur PQ Gem V2400 Oph RXJ2133 • Polars ROLE OF SALT TELESCOPE ! BG CMi WGA1958 RXJ1730 V1223 Sgr

  6. Do IPs evolve towards synchronism? Wide range of asynchronisms: - Clustering close to Pspin/Porb=0.1 but new optical candidates at high & low degree of asynchronism - 50% of the class still to be confirmed in the X-rays! X-RAY FOLLOW-UPS ON GOING! Norton et al. (2004,2008) propose IPs at Porb>3hrs with: • B ≥10 MG will evolve intoPolars • B≤10MG evolve intounobservablelow-fieldPolars or B fieldre-emergeswhenMdotdecreases. • Tokeepspin-equilibriumPspinincreaseswhilePorbdecreases -> short PorbIPsshouldbeweaklydesynchronized  Confirmed O Candidates X This work XMM-Newton

  7. HARD X-RAY MCVs HARD X-RAY SURVEYS ARE CHANGING THE VIEW! INTEGRAL ISGRI: 421 sources (~5% are CVs) SWIFT/BAT: 450 sources (~6% are CVs)

  8. Common characteristics of hard X-ray CVs? INTEGRAL-ROSAT COLOR DIAGRAM: Hard spectra with wide range of absorption 25 INTEGRAL CVs with ROSAT counterpart MostRXTE ,INTEGRAL & SWIFTdetectedCVs are MCVs (Revnistevet al. 2004; Barlowet al. 2006; Bonnet-Bidaudet al.2007; Mukaiet al.2007; Bodagheeet al. 2007; Shafteret al. 2008, seealso Potter et al. Poster yesterday…….) MAGNETISM & ASYNCHRONISM SEEM TO BE COMMON CHARACTERISTCS OF HARD X-RAY CVs ! × Dwarf Nova ● IP Candidates ○ Confirmed IPs ∆ Confirmed Polars ∆ Asynchr. Polars ▲ Candidate Polar ● ● ● ● ● Confirmed IPs with XMM-Newton (Haberl et al. 2002; Staude et al. 2006; de Martino et al. 2006,2008; Anzolin et al. 2009)

  9. RoleofMCVs in GalacticPopulations? CHANDRA SurveyofGalactic Center (Munoet al. 2003;2004; Ruiteret al 2005): - 1500 over 2000 FaintSources: Lx < 1031 – 1033 erg/s - Hard spectra: kT > 8keV & Fe H-like and He-likeemissions - Affectedbylocalabsorption - Variable: Periods 300sec – 4.5hrs IPsproposedtobedominantpopulation IPs a stillhiddenpopulationofXRBs? RXTE & INTEGRAL surveysofMilkyWay (Sazonovet al. 2006; Revnivtsevet al. 2006, 2008): • XLF [2-10keV] at L<1034erg/s fromCoronal (65%) and CVs (35%) • XLF ofCVs [2-12keV] similarto XLF[16-60keV] GalacticRidgeemission at E>20keV dominatedbyMCVs Seealso poster on ChandraSurveyofGalacticBulgeby Torres et al. (Tuesday)

  10. RoleofXMM-Newton • Uninterruptedobservationsoffaintsources : - Securemembershipidentification - Accretion mode diagnostic :   Disc  -   Direct (no disc) accretion ,-,  Disc overflow (Hybrid) XMM-Newtonobserved 20 IPs : • Confirmed IP status for 11 candidates! • Providednewhints in emissionproperties • Energy dependentX-Ray/UV/Opticalpulses: - Geometry and magneticfieldcomplexity - SitesofPrimary & Reprocessedradiation - Absorptioneffects • X-Ray spectra: - Accretion region diagnostic: Pre-Shock, Post-Shock, WD irradiation

  11. X-ray Periodicities Complexities in Energy dependent X-Ray Power Spectra ω-Ω ω ω One Pole Hybrid (Anzolin et al. 2008) One Pole disc-fed (de Martino et al. 2005)

  12. X-ray Periodicities Complexities in Energy dependent X-Ray Power Spectra ω-Ω ω ω 2ω 3ω Two Poles disc-fed (de Martino et al. 2008) Two Pole Hybrid (de Martino et al. 2006)

  13. X-ray Pulses Energy dependent structured pulsations SeealsoKojiMukai’s Poster #87 Two hard & Soft Poles Stronger Soft Pole Primary hard & soft Pole + Secondary soft Pole One hard Pole

  14. X-ray Spectral Properties Starting from the simplest case of HT Cam (de Martino et al. 2005) Multi-temperature post-shock flow :EM(T) ≈(T/Tmax)α -He-like OVII triplet: no forbidden line -> high density limit ne> 5x1012cm-3 - OVII/OVIII ratio -> kTmin=0.3keV - V(OVIII)1000km/s-> Vshock≈Vff/4 - kTmax=20keV; α=0.7 Az=0.6 - Absorption negligible (de Martino et al. 2005,A&A)

  15. X-ray Spectral Properties Complexities at soft energies UU Col a Soft ROSAT IP Two temperatures:kT hot=11 keV kT cool=0.18 keV Az=0.4 Black-Body:kTbb=50eV Partial(51%) Dense Absorber:1.0x1023cm-2 Strong lines OVIII, OVII OVII/OVIII ratio -> kT=0.2 keV (de Martino et al. 2006, A&A) Multi-temperature plasma often unable to represent spectra

  16. X-ray Spectral Properties XMM-Newtonfindsnew SOFT X-RAY IPs RXJ0704+2625 & RXJ1803+4012 Multi-temperatures:kTmax~30 keV Black-Body:kTbb=95eV Partial(40%) Dense Absorber:3x1023cm-2 (Anzolinet al. 2008) One temperature:kT hot > 40 keV Black-Body:kTbb=84eV EW (6.4keV) = 140 ev Total Absorber: 1x1020cm-2 Partial(35%) Dense Absorber:2.0x1023cm-2

  17. Hard X-ray IPs: a growing family …& …further complexities at soft energies RXJ1730-0559 a hard IP with a complex Soft spectrum XMM-NEWTON EPIC-pn & MOS INTEGRAL IBIS ISGRI Two temperatures:kT hot = 55keV kT cool=0.17 keV Az=0.4 Black-Body:kTbb=90eV Total Absorber:3.6x1021cm-2 Partial(56%) Dense Absorber:1.4x1023cm-2 OVII Absorption edge@ 0.74keVτ~1.8 Reflection: 6.4keV Fe line:EW=110eV (de Martino et al. 2008,A&A) 3rd IP with absorption edge! (V709 Cas - de Martino et al. 2001; V1223 Sgr – Mukai et al. 2001)  Warm absorber in IPs

  18. Hard IPs……..a growing family …but NOT all of them have a SOFT BB component IGRJ0023+6141 & RXJ2133+5107 Twotemperatures:kT hot >14 keV kT cool=0.17keV EW (6.4keV) = 100 ev Total Absorber: 2x1021cm-2 Partial(36%) Dense Absorber:1x1023cm-2 Three temperatures:kTmax = 40 keV kTmed =5 keV kT low = 1keV EW (6.4keV) = 140 ev Black-Body:kTbb=99eV Partial(45%) Dense Absorber:1x1023cm-2 (Anzolinet al. 2009, sub)

  19. SOFT IPs: An emergingclass QUESTIONS: • Do allIPspossess soft BB component? Geometricfactorsmay play a role(Evans & Hellier 2007) butnotalways(Anzolinet al. 2008) • High kTBB -> LxlocallyexceedingEddington Whathappens at footprints? • IskTBBlinkedtoMagneticFieldStrength? IrradiationbyCyclotron & Bremsstrahlung ? Characteristics: • HeavilyabsorbedNh ~ 1023cm-2BBs • BB temperaturesover a widerrange (30-100eV) • Soft-to-HardLuminosityratiolowerthanPolars • WD spotssmallerforhotterBBs (f ~10-5-10-6) ROSAT: 4 IPs with soft BB similar to Polars (30-60eV) XMM-Newton: Current roster of 13 IPs (42% of class) Absorption dips and BB Polars: Ramsay et al. 04 IPs: Haberl et al. 02, de Martino et al. 06,08 Evans & Hellier 07 Staude et al. 08 Anzolin et al. 08, 09

  20. SOFT IPs: An emerging class Reprocessing at WD poles • Bremsstrahlung irradiates small WD spot areas • Cyclotron radiation beaming on wide areas • BB Temperature is average over spot area (Konig et al. 2006) • Hotter BBs for lowest field IPs • Cooler BBs in higher field IPs (Anzolin et al. 2008) • Polarization searches to confirm the hypothesis A complete censusneededtodrawconclusions!

  21. XMM-NewtonChangingourviewofMCVs • Increasing number of IPs with Soft X-ray BB but with wider Temperature range than Polars • Increasing number (~33%) of Polars with no Soft X-ray BB (Homer et al. 05; Schmidt et al. 05; Ramsay et al.09; Vogel & Schwopeposter yesterday) kTbb Mdot/f1/4 Shifted to the EUV range This is what believed to occur in most IPs • Reprocessing in MCVs occurs over large range of spot areas • Tracing different B,mdot parameter space values?

  22. Conclusions • IdentificationofnewMCVsessentialtounderstand : • EvolutionofMCVs • Potentialrole in GalacticPopulationsofX-raysources • RoleofXMM-Newton in: • Identificationofnewfaintcandidates • Studyoftemporal and spectralproperties • IncreasingsimilaritiesofIPswithPolars: • One or Two-polesactive & secondary pole is soft • IncreasingnumberofIPswith soft BB butwithdifferences • IncreasingPolarswith no soft BB • Westillneed a complete understandingofMCVs • Roleoffundamentalparameters (Bwd,Mwd,Mdot) in emissionproperties

More Related