1 / 12

Auto-Epistemic Logic

Auto-Epistemic Logic. Proposed by Moore (1985) Contemplates reflection on self knowledge (auto-epistemic) Permits to talk not just about the external world, but also about the knowledge I have of it. Syntax of AEL. 1st Order Logic, plus the operator L (applied to formulas)

colman
Download Presentation

Auto-Epistemic Logic

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Auto-Epistemic Logic • Proposed by Moore (1985) • Contemplates reflection on self knowledge (auto-epistemic) • Permits to talk not just about the external world, but also about the knowledge I have of it

  2. Syntax of AEL • 1st Order Logic, plus the operator L (applied to formulas) • Lj signifies “I know j” • Examples: place →L place (or  L place → place) young (X) Lstudies (X) → studies (X)

  3. Meaning of AEL • What do I know? • What I can derive (in all models) • And what do I know not? • What I cannot derive • But what can be derived depends on what I know • Add knowledge, then test

  4. Semantics of AEL • T* is an expansion of theory T iff T* = Th(T{Lj : T* |= j}  {Lj : T* |≠j}) • Assuming the inference rule j/Lj : T* = CnAEL(T  {Lj : T* |≠j}) • An AEL theory is always two-valued in L, that is, for every expansion: j | Lj T* Lj T*

  5. Knowledge vs. Belief • Belief is a weaker concept • For every formula, I know it or know it not • There may be formulas I do not believe in, neither their contrary • The Auto-Epistemic Logic of knowledge and belief (AELB), introduces also operator B j – I believe in j

  6. AELB Example • I rent a film if I believe I’m neither going to baseball nor football games Bbaseball Bfootball → rent_filme • I don’t buy tickets if I don’t know I’m going to baseball nor know I’m going to football  Lbaseball  Lfootball → buy_tickets • I’m going to football or baseball baseball  football • I should not conclude that I rent a film, but do conclude I should not buy tickets

  7. Axioms about beliefs • Consistency Axiom B • Normality Axiom B(F → G) → (B F →B G) • Necessitation rule F B F

  8. Minimal models • In what do I believe? • In that which belongs to all preferred models • Which are the preferred models? • Those that, for one same set of beliefs, have a minimal number of true things • A model M is minimal iff there does not exist a smaller model N, coincident with M on Bj e Lj atoms • When j is true in all minimal models of T, we write T |=minj

  9. AELB expansions • T* is a static expansion of T iff T* = CnAELB(T  {Lj : T* |≠j}  {Bj : T* |=minj}) where CnAELB denotes closure using the axioms of AELB plus necessitation for L

  10. The special case of AEB • Because of its properties, the case of theories without the knowledge operator is especially interesting • Then, the definition of expansion becomes: T* = YT(T*) where YT(T*) = CnAEB(T  {Bj : T* |=minj}) and CnAEB denotes closure using the axioms of AEB

  11. Least expansion • Theorem: Operator Y is monotonic, i.e. T  T1 T2→YT(T1) YT(T2) • Hence, there always exists a minimal expansion of T, obtainable by transfinite induction: • T0 = CnAEB(T) • Ti+1 = YT(Ti) • Tb = Ua < b Ta (for limit ordinals b)

  12. Consequences • Every AEB theory has at least one expansion • If a theory is affirmative (i.e. all clauses have at least a positive literal) then it has at least a consistent expansion • There is a procedure to compute the semantics

More Related