440 likes | 567 Views
Invited Lecture Introduction to Natural Language Processing Fall 2008. Machine Translation: Challenges and Approaches. Nizar Habash Associate Research Scientist Center for Computational Learning Systems Columbia University.
E N D
Invited LectureIntroduction to Natural Language Processing Fall 2008 Machine Translation:Challenges and Approaches Nizar HabashAssociate Research Scientist Center for Computational Learning Systems Columbia University
Currently, Google offers translations between the following languages:
Thank you for your attention! Questions?
Road Map • Multilingual Challenges for MT • MT Approaches • MT Evaluation
Multilingual Challenges • Orthographic Variations • Ambiguous spelling • كتب الاولاد اشعاراكَتَبَ الأوْلادُ اشعَاراً • Ambiguous word boundaries • Lexical Ambiguity • Bank بنك (financial) vs. ضفة(river) • Eat essen (human) vs. fressen (animal)
conj noun article plural Multilingual Challenges Morphological Variations • Affixation vs. Root+Pattern • Tokenization
Translation Divergences conflation لست am suis هنا I not here Je ne pas ici لست هنا I-am-not here I am not here Je nesuispas ici I notamnot here
Road Map • Multilingual Challenges for MT • MT Approaches • MT Evaluation
Gisting MT ApproachesMT Pyramid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
MT ApproachesGisting Example Sobre la base de dichas experiencias se estableció en 1988 una metodología. Envelope her basis out speak experiences them settle at 1988 one methodology. On the basis of these experiences, a methodology was arrived at in 1988.
Gisting Transfer MT ApproachesMT Pyramid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
butter Y X MT ApproachesTransfer Example • Transfer Lexicon • Map SL structure to TL structure poner :subj :mod :obj :subj :obj mantequilla en X :obj Y X puso mantequilla en Y X buttered Y
Gisting Transfer Interlingua MT ApproachesMT Pyramid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
MT ApproachesInterlingua Example: Lexical Conceptual Structure (Dorr, 1993)
Gisting Transfer Interlingua MT ApproachesMT Pyramid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
Dictionaries/Parallel Corpora Transfer Lexicons Interlingual Lexicons MT ApproachesMT Pyramid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
MT ApproachesStatistical vs. Rule-based Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
Statistical MT Noisy Channel Model Portions from http://www.clsp.jhu.edu/ws03/preworkshop/lecture_yamada.pdf
Slide based on Kevin Knight’s http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Statistical MT Automatic Word Alignment • GIZA++ • A statistical machine translation toolkit used to train word alignments. • Uses Expectation-Maximization with various constraints to bootstrap alignments Maria no dio una bofetada a la bruja verde Mary did not slap the green witch
Statistical MT IBM Model (Word-based Model) http://www.clsp.jhu.edu/ws03/preworkshop/lecture_yamada.pdf
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Phrase-Based Statistical MT Morgen fliege ich nach Kanada zur Konferenz Tomorrow I will fly to the conference In Canada • Foreign input segmented in to phrases • “phrase” is any sequence of words • Each phrase is probabilistically translated into English • P(to the conference | zur Konferenz) • P(into the meeting | zur Konferenz) • Phrases are probabilistically re-ordered See [Koehn et al, 2003] for an intro. This is state-of-the-art!
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Word Alignment Induced Phrases Maria no dió una bofetada a la bruja verde Mary did not slap the green witch (Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Word Alignment Induced Phrases Maria no dió una bofetada a la bruja verde Mary did not slap the green witch (Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Word Alignment Induced Phrases Maria no dió una bofetada a la bruja verde Mary did not slap the green witch (Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the) (Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch)
Word Alignment Induced Phrases Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Maria no dió una bofetada a la bruja verde Mary did not slap the green witch (Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the) (Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch)(Maria no dió una bofetada, Mary did not slap) (a la bruja verde, the green witch) …
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Word Alignment Induced Phrases Maria no dió una bofetada a la bruja verde Mary did not slap the green witch (Maria, Mary) (no, did not) (slap, dió una bofetada) (la, the) (bruja, witch) (verde, green) (a la, the) (dió una bofetada a, slap the) (Maria no, Mary did not) (no dió una bofetada, did not slap), (dió una bofetada a la, slap the) (bruja verde, green witch)(Maria no dió una bofetada, Mary did not slap) (a la bruja verde, the green witch) … (Maria no dió una bofetada a la bruja verde, Mary did not slap the green witch)
Slide courtesy of Kevin Knight http://www.sims.berkeley.edu/courses/is290-2/f04/lectures/mt-lecture.ppt Advantages of Phrase-Based SMT • Many-to-many mappings can handle non-compositional phrases • Local context is very useful for disambiguating • “Interest rate” … • “Interest in” … • The more data, the longer the learned phrases • Sometimes whole sentences
MT ApproachesStatistical vs. Rule-based vs. Hybrid Source meaning Target meaning Source syntax Target syntax Source word Target word Analysis Generation
MT ApproachesPractical Considerations • Resources Availability • Parsers and Generators • Input/Output compatability • Translation Lexicons • Word-based vs. Transfer/Interlingua • Parallel Corpora • Domain of interest • Bigger is better • Time Availability • Statistical training, resource building
Road Map • Multilingual Challenges for MT • MT Approaches • MT Evaluation
MT Evaluation • More art than science • Wide range of Metrics/Techniques • interface, …, scalability, …, faithfulness, ... space/time complexity, … etc. • Automatic vs. Human-based • Dumb Machines vs. Slow Humans
Automatic Evaluation ExampleBleu Metric(Papineni et al 2001) • Bleu • BiLingual Evaluation Understudy • Modified n-gram precision with length penalty • Quick, inexpensive and language independent • Correlates highly with human evaluation • Bias against synonyms and inflectional variations
Automatic Evaluation ExampleBleu Metric Test Sentence colorless green ideas sleep furiously Gold Standard References all dull jade ideas sleep irately drab emerald concepts sleep furiously colorless immature thoughts nap angrily
Automatic Evaluation ExampleBleu Metric Test Sentence colorless green ideassleepfuriously Gold Standard References all dull jade ideassleep irately drab emerald concepts sleepfuriously colorless immature thoughts nap angrily Unigram precision = 4/5
Automatic Evaluation ExampleBleu Metric Test Sentence colorless green ideas sleep furiously colorless green ideas sleep furiously colorless greenideas sleepfuriously colorless green ideassleep furiously Gold Standard References all dull jade ideassleep irately drab emerald concepts sleepfuriously colorless immature thoughts nap angrily Unigram precision = 4 / 5 = 0.8 Bigram precision = 2 / 4 = 0.5 Bleu Score = (a1 a2 …an)1/n = (0.8╳ 0.5)½ = 0.6325 63.25
Automatic Evaluation ExampleMETEOR (Lavie and Agrawal 2007) • Metric for Evaluation of Translation with Explicit word Ordering • Extended Matching between translation and reference • Porter stems, wordNet synsets • Unigram Precision, Recall, parameterized F-measure • Reordering Penalty • Parameters can be tuned to optimize correlation with human judgments • Not biased against “non-statistical” MT systems
Metrics MATR Workshop • Workshop in AMTA conference 2008 • Association for Machine Translation in the Americas • Evaluating evaluation metrics • Compared 39 metrics • 7 baselines and 32 new metrics • Various measures of correlation with human judgment • Different conditions: text genre, source language, number of references, etc.
Automatic Evaluation ExampleSEPIA(Habash and ElKholy 2008) • A syntactically-aware evaluation metric • (Liu and Gildea, 2005; Owczarzak et al., 2007; Giménez and Màrquez, 2007) • Uses dependency representation • MICA parser (Nasr & Rambow 2006) • 77% of all structural bigrams are surface n-grams of size 2,3,4 • Includes dependency surface span as a factor in score • long-distance dependencies should receive a greater weight than short distance dependencies • Higher degree of grammaticality?
Interested in MT?? • Contact me (habash@cs.columbia.edu) • Research courses, projects • Languages of interest: • English, Arabic, Hebrew, Chinese, Urdu, Spanish, Russian, …. • Topics • Statistical, Hybrid MT • Phrase-based MT with linguistic extensions • Component improvements or full-system improvements • MT Evaluation • Multilingual computing