140 likes | 259 Views
SHAPED. Rafael López. VERTICES, EDGES, FACES. CIRCLES. AREA: A= r 2 CIRCUMFRANCE= C= d or C= 2 r. C. DIAMETER. RADIUS. Congruency. C. F. A. E. D. B. ABC. DEF. F GH JK L - M NP QR S. NP / GH = RQ / KJ. 6 / 4 = X / 2 4 x = 1 2 4 x = 1 2 4 x /4 = 1 2 /4. F. G. S.
E N D
SHAPED Rafael López
CIRCLES AREA: A= r2 CIRCUMFRANCE= C= d or C= 2 r C DIAMETER RADIUS
Congruency C F A E D B ABC DEF
FGHJKL - MNPQRS NP/GH=RQ/ KJ 6/4=X/2 4x=12 4x=12 4x/4=12/4 F G S 4 cm Cross Multiply R M L H Xcm N Q 6 cm J P K 2 cm
APPLICATIONS AND PROPORTION Mans height / poles height= Mans shadow/ poles shadow 6/x= 3/45 3x= 270 3x/ 3=270/ 3 X=90 X ft 6 ft 45 ft 3 ft
CHANGING DIMENSIONS PERIMETER: 2 (L) + 2 (W) Rectangle A: 2( 2) +2(W)=12 Rectangle B: 2( 6)+ 2 ( W)= 18 A B 4 6 AREA: L x W Rectangle A: 4x2 = 8 Rectangle B: 6x3 = 18 2 Sides: 4/6 =2/3 3 perimeters: 12/ 18= 2/3 Areas: 8/18 = 4/6 = (2/3) 2
Viewing solids from different perspectives Front view Topview Sideview
prism B: ½ x BxH B: ½ (13) (14) B: 39in.2 V: B xH V: (39) (4) V: 156 in. 3 Volume= ( Area of one base) x (Height of the prism )
FORMULAS FOR VOLUME Prism BB x H B: area of base H: Height of prism Cube S3 S: length of one side Pyramid B: area of base H: Height of pyramid 1/3 B x H Cylinder r : Radius H: Height r2h Cone 1/3r2h r : Radius H: Height
Volume of Sphere V= 4/3 r3 V= 4/3 (3.14) (33) V= 113.04 3 cm
Classifying Solids A prism is a solid formed by two congruent polygon bases connected by rectangular lateral faces. A prism is named with regard to the polygon bases A cylinder is a solid formed by two congruent circular bases A pyramid is a solid formed by one polygon base. The lateral faces are triangles that meet at a vertex. A pyramid is named with regard to the polygon base. A cone is a solid formed by one circular base with a vertex at the opposite end
Volume practice B: ½ x BxH B: ½ (8) ( 30) B: ½ ( 240) B: 120 V= r2h V= 3. 14 x (10 2)x 23 V= 3.14 x 20 x 23 V= 3.14 x 460 V= 1444.4 V: B x H V: 120 x 30 V: 3600