130 likes | 306 Views
9.6 乘法公式的再认识 因式分解 ( 二 ) 1 课时. 温故知新. 1、平方差公式如何表示? (a+b)(a-b)=a2-b2 反过来又如何? a2-b2 = (a+b)(a-b) 2 、你能把分解因式吗? x2-25. a2-b2 = (a+b)(a-b) 观察上面的式子,你发现其有何 特征? 左边是两数的平方差,右边是两数和与它们差的积。. 填空:. 4. (1)a2-16=a2-( )2 =(a+ )(a- ) (2)64-b2=( )2-b2 =( +b)( -b)
E N D
温故知新 1、平方差公式如何表示? (a+b)(a-b)=a2-b2 反过来又如何? a2-b2 = (a+b)(a-b) 2、你能把分解因式吗? x2-25
a2-b2 = (a+b)(a-b) 观察上面的式子,你发现其有何 特征? 左边是两数的平方差,右边是两数和与它们差的积。
填空: 4 (1)a2-16=a2-( )2 =(a+ )(a- ) (2)64-b2=( )2-b2 =( +b)( -b) (3)25x2-49y2=( )2-( )2 =( + )( - ) 4 4 8 8 8 5x 7y 5x 7y 5x 7y
例1:把下列各式分解因式: 1.36-25x2 2.16a2-9b2 这种利用公式进行因式分解的方法,叫做运用公式法。
练一练1:把下列各式分解因式: 1.36-x2 2.a2- b2 3.x2-16y2 4.x2y2-z2
例2:把下列各式分解因式: 1.(x+y)2-(x-y)2 2.9(a+b)2-4(a-b)2
练一练2: 1.(x-2)2-9 2.(x+a)2-(y-b)2 3.-25(a+b)2+4(a-b)2
练一练3:如图,在边长为16.4厘米的正方形纸片的4个角各剪去一边长为1.8厘米的正方形,求余下纸片的面积练一练3:如图,在边长为16.4厘米的正方形纸片的4个角各剪去一边长为1.8厘米的正方形,求余下纸片的面积
课堂小结 1.平方差公式: a2-b2 = (a+b)(a-b) 2.用平方差公式因式分解步骤: 一变、二分解
拓展训练1:因式分解 1.-125x2y2+4 2.4(a-b)2-9(2a+3b)2 3.(2a-b)2-9a2 4.(x2+3x)2-(x+1)2
拓展训练2:利用因式分解计算 1.10122-9882 2.73×1452-1052×73 3.1522-522 2842-162