1 / 17

Two-Image Encryption by Random Grids

Two-Image Encryption by Random Grids. 1. Joy Jo-Yi Chang, Ming- Jheng Li, Yi-Chun Wang and Justie Su-Tzu Juan. National Chi Nan University. B. B. R 1. R 1. R 2. B. R 2. R 1. R 2. B. R 1. R 2. B. R 1. R 2. B. R 1. R 2. random(0,1). random(0,1). B. R 1. R 2. B. R 1.

Download Presentation

Two-Image Encryption by Random Grids

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-Image Encryption by Random Grids 1 Joy Jo-Yi Chang, Ming-Jheng Li, Yi-Chun Wang and Justie Su-Tzu Juan National Chi Nan University

  2. B B R1 R1 R2 B R2 R1 R2 B R1 R2

  3. B R1 R2 B R1 R2 random(0,1) random(0,1) B R1 R2 B R1 R2

  4. Definition 1: fRSP(.): Y ← fRSP(X), Y is the output of the function fRSP(.) with the inputs X, where fRSP(.) is that randomly select a pixel of X. • Definition 2: fRG (.)Y||Z ← fRG (X), Y and Z are the outputs of the function fRG(.) with the input X, where fRG(.) is one of the three random grids algorithm in [6] which inputs a pixel of the secret image, then outputs two cipher-pixels for two shares. X Y Z (i , j) (i , j) (i , j)

  5. Definition 3: (.) :Z← (X,Y): Z , Z is the output of thefunction f’RG(.) with the inputs X and Y, where (.) isthe function according to fRG(.): (as in Definition 2) whichinputs a cipher-pixel of one share Y and a pixel of the secretimage X, then outputs the other cipher-pixel. X Y Z (i , j) (i , j) (i , j)

  6. Chen et al. Step 1: SA(i, j) ← fRSP(SA). Step 2: G1(i, j)||G2(i, j) ← fRG(SA(i, j)). SA G1 G2 Step 3: G2(j,(m-1)-i) ←(SB(j, ,(m-1)-i), G1(i, j)). SB G1 G2

  7. Step 4: G1(j,(m-1)-i) ← (SA(j, (m-1)-i), G2(j, (m-1)-i, ). SA G1 G2 Step 5: G2((m-1)-i, (m-1)-j) ←(SB(j, (m-1)-i), G1(j, (m-1)-i, ). G1 G2 SB

  8. Step 6: G1((m-1)-i, (m-1)-j) ←(SA(m-1)-i, (m-1)-j),G2((m-1)-i, (m-1)-j) SA G1 G2 Step 7: G2((m-1)-j, i) ←(SB(m-1)-i, (m-1)-j),G1((m-1)-i, (m-1)-j), G1 G2 SB

  9. Step 8: G1((m-1)-j, i) ←random(0,1) random(0,1)

  10. This papper SA and SB with the size of 240 ╳240 • Step 1: SA(i, j) ← fRSP(SA). • Step 2: G1(i, j)||G2(i, j) ← fRG(SA(i, j)). (3,4) (3,4) (3,4) SA G1 G2 • Step 3: G2((i + m/4), j) ←(SB(i, j), G1(i, j)). (3,4) (3,4) (63,4) G1 G2 SB

  11. Step 4: G1((i + m/4), j) ←(SA((i + m/4), j), G2((i + m/4),j)). (63,4) (63,4) (63,4) SA G1 G2 • Step 5: G2((i + m/2), j) ← (SB((i + m/4), j), G1((i + m/4),j)). (63,4) (63,4) (123,4) G1 SB G2

  12. Step 6: G1((i + m/2), j) ← (SA((i + m/2), j), G2((i + m/2),j)). (123,4) (123,4) (123,4) SA G1 G2 • Step 7: G2((i + 3m/4), j) ← (SB((i + m/2), j), G1((i + m/2),j)). (123,4) (183,4) (123,4) SB G1 G2

  13. Step 8: G1((i + 3m/4), j) ← (SA((i + 3m/4), j), G2((i +3m/4), j)). (183,4) (183,4) (183,4) SA G1 G2

  14. Simulation 2: binary secrets, moving horizontally by 1/8 width. share G1 share G2 Simulation 1: binary secrets, moving horizontally by 1/4 width. share G1 share G2

  15. Simulation 4: no constraint about the size. share G1 share G2 Simulation 3: binary secrets, moving horizontally by 1/30 width. share G1 share G2

  16. THE COMPARISON OF THE SIZE. QUANTITY OF THE DISTORTION

More Related