510 likes | 603 Views
Chapter 7. SIMPLIFY: 20 12 3. 20 = 4 5 = 2 5 12 3 12 3 3 3 3. =. =. 4 3. MULTIPLY: ( 2 5 ) 2. (2 5 ) 2 = 4 25 = 4 5 = 20.
E N D
SIMPLIFY: 20 12 3
20 = 4 5 = 2 512312 3 3 3 3 = = 4 3
COMPLETE:( ___ )2 + ( ___ )2 = ( ___ )2 hyp leg1 leg2
(leg1)2 + (leg2)2 = (hyp)2 • Pythagorean Theorem
Complete to form RIGHT triangles: 3, 4, ____ 5, 12, ____ 6, 8, ____ 8, 15, ____
Given segment lengths a, b, c longest Right c2 a2 + b2 Obtuse c2 a2 + b2 Acute c2 a2 + b2
COMPLETE: • L = ____ • H = ____ 45 45
SOLVE: 45 • x = _____ • y = _____ y 8 45 x
COMPLETE: • LL = _____ • H = _____ 60 Ls 30
SOLVE: y x = _____ y = _____ 60 4 30 x
AREA OF EQUILATERAL TRIANGLES: A = ½ ( ____ )( ____ ) A = ½ ( ____)( ____ ) A = ( ____ )2 ( ____ )
A = ½ bh A = ½ ap A = s2 4
Find the area: 6 (Equilateral Triangle)
18 6 3 30 9 A = s2 4 A = (18)2 4 A = 81 A = ½ bh A = ½ (18)(9 ) A = 81 A = ½ ap A = ½ (3 )(54) A = 81
AREA OF SQUARES: • A = ( ____ )2 • A = ½ ( ____ )( ____ ) • A = ½ ( ____ )( ____ )
A = s2 A = ½ ap A = ½ d1d2 a side (s)
Find the area: 10 (Square)
20 10 10 45 10 A = s2 A = 202 A = 400 A = ½ ap A = ½ (10)(80) A = 400 A = ½ d1d2 A = ½ (20 )(20 ) A = 400
A = ½ ap 120 a 60
Find the area: 8 (Regular Hexagon)
8 4 3 60 4 4 A = ½ ap A = ½ (4 3)(48) A = 96 3
AREA OF PARALLELOGRAMS: • A = ( ____ )( ____ )
A = bh Height (h) Base (b)
A = ½bh height (h) base (b)
Find the height: 6 6 4
6 6 h 2 2 4 h2 +22 =62h2 = 32h = 32 = 4 2
A = ½ (l1)(l2) leg (l1) leg (l2)
AREA OF RHOMBUSES: • A = ½ ( ____ ) ( ____ )
AREA OF TRAPEZOIDS: A = ½ ( ____ ) ( ____ + ____ )
A = ½(h)(b1+ b2) base (b1) height (h) base(b2)
FOR CIRCLES: Circumference = ( __ )( __ )( __ )
AREA OF CIRCLES: A = ( ____ )( ____ )2