1 / 17

THE STRENGHT OF 70% REVISING A GIVEN THRESHOLD OF RABIES CONTROL

THE STRENGHT OF 70% REVISING A GIVEN THRESHOLD OF RABIES CONTROL. Tollwut Suveillance Data. Modell. UFZ - Project group Ecological Epidemiology EcoEpi Leipzig. The strength of 70%. Eradication. Europe. The strength of 70%. ~ 70%. Persistence.

Download Presentation

THE STRENGHT OF 70% REVISING A GIVEN THRESHOLD OF RABIES CONTROL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. THE STRENGHT OF 70%REVISING A GIVEN THRESHOLD OF RABIES CONTROL Tollwut Suveillance Data Modell UFZ - Project group Ecological Epidemiology EcoEpi Leipzig

  2. The strength of 70%

  3. Eradication Europe The strength of 70% ~ 70% Persistence Anderson et al. (1981). Population dynamics of fox rabies in Europe. Nature289: 765-770

  4. The strength of 70%

  5. The strength of 70% • Field planning Per capita number of baits to get >70% • Quality Assessment Control programs with sero <70% failed • Modelling Concordance in predicting 70% validates

  6. Revising the benchmark

  7. Europe Simulation Model Anderson’s model + individual foxes + local transmission = … Eradication ~ 70% Conservative Improved ~ 60% Persistence

  8. Reasoning Population Individuals Flying Foxes Biological Foxes Revised Benchmark

  9. Revising the benchmark Reference Flying Foxes Biological Foxes Predicted Herd Immunity Fox density in spring no rabies [per km²]

  10. Quantifying benefit

  11. Quantifying possible benefit… Apply relation to field strategy… Construct relation between bait density and immunization level… Simulation: Target immunity down by 10 percentage points necessary baits decrease by one third. 20 14 20 instead of 14 baits/km2 cost additionally 120.000 € p.a. per 10.000 km² vaccination area Today’s target 75% 10% less

  12. Summary

  13. Summary Appropriate modelling and field observations coincidentally suggest 60% herd immunity and as useful target in rabies control  thus Relative to today's baiting strategy one third of applied resources could be saved by applying 14 baits per sq km ?

  14. Thank you for your attention D. Eisinger L. Tischendorf M. Müller V. Grimm F. Jeltsch C. Wissel T. Müller C. Staubach T. Selhorst H. Schlüter

  15. Simulation Model General relation: Target down by 10 percentage points = Baits decrease by 30%

  16. Two models of fox rabies Population model (Anderson et al. 1981) Individual-based model (Eisinger et al. 2005) Start of vaccination campaign Start of vaccination campaign Both models reflect dynamics of field data correctly!

  17. Simulation Model Vaccination Biannual bait distribution along flight lines Individual bait consumption Foxes in families Mortality/Reproduction Dispersal Transmission Within group contacts Neighbourhood contacts Mating activity Dispersal

More Related