440 likes | 784 Views
Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst. 演講者 : 黃仁鴻 指導老師 : 于淑君 博士. Types of Catalysts. Polystyrene-Supported Catalysts. Chem. Rev. 2002, 102, 3275-3300. Silica-Supported Catalysts.
E N D
Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst 演講者 : 黃仁鴻 指導老師 : 于淑君 博士
Polystyrene-Supported Catalysts Chem. Rev. 2002, 102, 3275-3300.
Silica-Supported Catalysts Chem. Rev. 2002, 102, 3495-3524.
Nanoparticles-Supported Catalysts Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731.
The Limitation of Phosphine Ligand a. Oxidation b. Metal Leaching Kinzel, E. J. Chem. Soc. Chem. Commun.1986 1098.
Bipyridine Ligand Poly(N,N-bipyridyl-endo-norborn-2-ene-5-carbamide)10 Buchmeiser, F. M. R. J. Am. Chem. Soc.1998, 120, 2790.
Motivation ► Nickel is less expensive than other transition metal. ► To study the immobilization of molecular Ni(II) complexes on the surfaces of Au NPs by using the covalent techniques via a specially designed bipyridine ligand as spacer linkers. ►To investigate the reactivity of hybrid catalyst of this type and look into any possibility of reactivity changes due to the process of immobilization.
Catalyst Design soluble metal complex nanoparticles with controllable solubility Au NPs have been known not only to possess solid surfaces resembling the (1 1 1) surface of bulk gold but also to behave like soluble molecules for their dissolvability, precipitability, and redissolvability. functional groups coordinationl ligands spacer linker Lin, Y.-Y; Tsai, S.-C.; Yu, S. J. J. Org. Chem.2008, 73, 4920-4928.
Comparison of M2+(d8 species) Square Planar vs. Tetrahedral Complexes • Ni => small Δt => tetrahedral & square planar • Pd & Pt => large Δsp => square planar • Ligands => large , weak-field => tetrahedral • Ligands => small, strong-field => square planar Greenwood, Chemistry of the elements, Elsevier Science, 1997; p. 1347
Square Planar-Tetrahedral Isomerism of Nickel Halide Complexes of Ni(PPh2R)2X2 • The tetrahedral structure is increasingly favored in the orders • P(C2H5)3 < P(C2H5)2C6H5 < PC2H5(C6H5)2 < P(C6H5)3 • -Steric effect • SCN < Cl < Br < I • -Due to the crystal field strength of the ligand decreases R. G. Hayter, F. S. Humiec. Inorg. Chem. 1965, 12, 1701-1706.
Square Planar and Tetrahedral Structures of Ni[P(CH2Ph)Ph2]2Br2 Square-Planar Tetrahedral Kilbourn. B. T.; Powell. H. M.J. Chem. Soc. (A), 1970, 1688-1693.
Synthesis of Molecular Ni(II)-Catalyst 江柏誼碩士論文 2008
d6-DMSO # * H2O RS-Au-L (6) # * RS-Au-L-NiBr2 (7) 1H NMR Spectra of Au NPs 6 and 7
EPR Spectrum of RS-Au-L-NiBr2(7) RS-Au-L-NiBr2 (7) [Et4N]2[NiCl4] g = 2.68 (powder, 77K, g = 2.55) Okada, K.; Matsushita, F.; Hayashi S. Clay Minerals 1997, 32, 299-305.
TEM Image of Octanethiol Protected Au-SR (5) Particle size distribution 4.4 ± 0.6 nm
TEM Image of RS-Au-L (6) Particle size distribution 4.6 ± 0.6 nm
TEM Image of RS-Au-L-NiBr2(7) Particle size distribution 4.9 ± 0.6 nm
UV-vis Spectra of Ligand 4, and Au Nanoparticles 5, 6 and 7 257 nm 517 nm
IR Spectra of 4, 6 and 7 1576 cm-1 1590 cm-1
83.9 87.6 872.9 855.2 4f7/2 4f5/2 2p1/2 2p3/2 XPS Data of RS-Au-L-NiBr2(7)
Corey-Seebach Reaction Base n=2-6 n=2-6 Seebach, D.; Jones, N. R.; Corey, E. J. J. Org. Chem. 1968, 33, 300-105.
Lewis Acid Catalyzed Thioacetalization • Conventional Lewis Acids BF3-Et2O、ZnCl2、AlCl3、SiCl4、LiOTf、InCl3 Nakata, T. et. al., Tetrahedron Lett. 1985, 26, 6461-6464. Evans, D. V. et. al., J. Am. Chem. Soc. 1977, 99, 5009-5017. Firouzabadi, H. et. al., Bull. Chem. Soc. Jpn.2001, 74, 2401-2406. • Transition Metal Lewis Acids TiCl4、WCl6、CoCl2、Sc(OTf)3、MoCl5、NiCl2 Kumar, V. et. al., Tetrahedron Lett. 1983, 24, 1289-1292. Firouzabadi, H. et., al. Synlett 1998, 739-741. Goswami, S. et. al., Tetrahedron Lett.2008, 49, 3092-3096. • Lanthanide Metal Lewis Acids Lu(OTf)3、 Nd(OTf)3 Kanta, D. S. J. Chem. Res. Synop. 2004,230-231. Kanta, D. S. Synth. Commun. 2004, 34, 230-231.
Nickel(II) Chloride Catalyzed Thioacetalization 10 mole % NiCl2 2.5 hour 96 % One use only A. T. Khan et al., Tetrahedron Lett.2003, 44, 919–922.
Comparison of Catalytic Activity Amoung Various Different Catalysts
Recycling Tests onCat. 7for Thioacetalization of Aldehyde No metal leaching !! Filtrate no further reactivity AA has no signal
Sythesis of α-Aminonitrile 6 ~ 18 hr, 73% ~ 92% De, S. K. J. Mol. Catal. A: Chem.2005, 225, 169-171.
The Various Modes of α-Aminonitrile Reactivity Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359-373.
Lewis Acid Catalyzed α-Aminonitrile • Lewis acid catalysts Et3N、InCl3、Ga(OTf)3、BiCl3 Paraskar, A. S.; Sudalai, A. Tetrahedron Lett.2006, 47, 5759-5762. Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron2002, 58, 2529-2532. Surya Prakash, G. K.; Mathew, T. ; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. PNAS 2007,104, 3703-3706. De, S. K. ; Gibbs, R. A. Tetrahedron Lett.2004, 45, 7407-7408. • Transition metal Lewis acid catalysts RuCl3、NiCl2、Sc(OTf)3、Cu(OTf)2 De, S. K. Synth. Commun.2005, 35, 653-656. De, S. K. J. Mol. Catal. A: Chem.2005, 225, 169-171. • Lanthanide Lewis acid catalysts Pr(OTf)3、La(O-i-Pr)、Yb(OTf)3 De, S. K. Synth. Commun.2005, 35, 961-966. • Others KSF、I2 Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah B.; Srinivas, M. Tetrahedron 2004, 60, 1767-1771. Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett.2005, 46, 4595-4597.
Entry R1NH2 Time (min) Yield (%) 1 15 98 2 15 97 3 15 95 4 10 88 5 10 >99
Conclusions 1. We have successfully synthesized an air- and water-stable and efficient interphase catalyst {Au NPs-S(CH2)11N(H)P(O)(2-py)2NiBr2}. 2. We use NMR、TEM、UV、IR、EPR and XPS for structural characterization of The Au NPs-Ni(II) catalyst. 3. The Au NPs-Ni(II) catalyst can be quantitatively recovered and effectively recycled for more than 11 times without any loss of reactivity.