1 / 55

Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification

Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification. Stéphane Roux, François Hild LMT, ENS-Cachan. Atelier « Problèmes Inverses », Nancy, 7 Juin 2011. Image 2. Image 1. Relative displacement field ?. Image 2. Image 1. Deformed image. Reference image.

Download Presentation

Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Corrélation d'images numériques: Stratégies de régularisation et enjeux d'identification Stéphane Roux, François Hild LMT, ENS-Cachan Atelier « Problèmes Inverses », Nancy, 7 Juin 2011

  2. Image 2 Image 1 Relative displacement field ?

  3. Image 2 Image 1

  4. Deformed image Reference image Relative displacement field ?

  5. Displacement field Uy Deformed image Reference image

  6. Displacement fields are nice, but … Can we get more ?

  7. Stress intensity Factor, Crack geometry Image 2 Image 1

  8. Damage field Deformed image Reference image

  9. Constitutive law Deformed image Reference image

  10. Outline • A brief introduction to “global DIC” • Mechanical identification • Regularization

  11. From texture to displacements DIC in a nutshell

  12. Digital Image Correlation • Images (gray levels) indexed by time t • Texture conservation (passive tracers) (hypothesisthatcanberelaxed if needed)

  13. Problem to solve • Weak formulation: Minimize wrt u where the residual is Provides a spatiallyresolvedqualityfield of the proposed solution

  14. Solution • The problemisintrinsicallyill-posed and highly non-linear ! • A specificstrategy has to bedesigned for accurate and robust convergence • It impacts on the choice of the kinematic basis

  15. Global DIC • Decompose the soughtdisplacementfield on a suited basis providing a naturalregularization • Yn: • FEM shapefunction, X-FEM, … • Elastic solutions, Numericallycomputedfields, Beamkinematics…

  16. The benefit of C0 regularization ZOI size / Element size (pixels) Key parameter = (# pixels)/(# dof)

  17. Example: T3-DIC* Pixel size = 67 mm *[Leclerc et al., 2009, LNCS 5496 pp. 161-171]

  18. Example: T3-DIC

  19. Example: T3-DIC Ux (pixel) 0.46 0.28 0.11 -0.06 -0.23 [H. Leclerc]

  20. Example: T3-DIC Uy (pixel) 0.54 0.35 0.15 -0.04 -0.24

  21. Example: T3-DIC

  22. Example: T3-DIC Residual 28 21 14 7 0 Mean residual = 3 % dynamic range

  23. Identification

  24. The real challenge • For solidmechanics application, the actual challenge is • not to get the displacementfields, but rather • to identify the constitutive law (stress/strain relation) • The simplest case islinearelasticity

  25. Plane elasticity • A potential formulation canbeadoptedshowingthat the displacementfieldcanbewrittengenerically in the complex plane as whereF and Y are arbitraryholomorphicfunctions • mis the shearmodulus, • kis a dimensionlesselastic constant (related to Poisson’s ratio)

  26. Plane elasticity • It suffices to introduce a basis of test functions for F(z) and Y(z) and considerthat and are independent • Direct evaluation of 1/m and k/m

  27. Validatedexamples • Brazilian compression test • Cracks

  28. Example 1:Brazilian compression test • Integrated approach: decomposition of the displacement field over 4 fields (rigid body motion + analytical solution)

  29. Integrated approach

  30. Integrated approach Identifiedproperties for the polycarbonate m 880 MPa n 0.45 In good agreement withliterature data

  31. Need for coupling to modelling • Elasticity (or incremental non-linearbehavior) • FEM

  32. Dialog DIC/FEA modeling • Local elastic identification R. Gras, Comptest2011

  33. T4-DVC

  34. More generalframework • Inhomogeneouselasticsolid • Non-linear constitutive law • Plasticity • Damage • Non-linearelasticity

  35. Regularization

  36. Mechanical regularization • The displacement field should be such that or in FEM language for interior nodes. This can be used to help DIC

  37. Integrated DIC • Reach smaller scale H. Leclerc et al., Lect. Notes Comp. Sci. 5496, 161-171, (2009)

  38. Tikhonov type regularization • Minimization of • Regularizationisneutralwith respect to rigid body motion • How should one chooseA ?

  39. Spectral analysis • For a test displacementfield Regularization log(||.||2) DIC Cross-over scale log(k)

  40. Boundaries • The equilibrium gap functionalisoperativeonly for interiornodes or free boundaries • Atboundaries, information maybelacking • Introduce an additionalregularizationterm(e.g. ) • Extendelasticbehavioroutside the DIC analyzedregion

  41. Regularizationat voxel scale • An example in 3D for a modest size 243 voxels

  42. Voxel scale DVC 1 voxel  5.1 µm Displacementnorm (voxels) Vertical displacement (voxels) H. Leclerc et al., Exp. Mech. (2011)

  43. Non-linear identification

  44. Identification • As a post-processingstep, a damage lawcanbeidentifiedfrom the minimization ofwhereU has been measured and Kisknown • Manyunknowns !

  45. Validation < 5.3 %

  46. Constitutive law State potential (isotropic damage) State laws Dissipated power Thermodynamic consistency Growth law ~ equivalentscalarstrain

  47. Use of a homogeneous constitutive law • Postulating a homogeneouslaw, damage is no longer a twodimensionalfield of unknowns, but a (non-linear) function of the maximum strainexperienced by an element of volume.

  48. Damage growth law • Identifiedform or truncation

  49. Identified damage image 10

  50. Identified damage image 11 log10(1-D)

More Related