1 / 22

Confidence Intervals and Hypothesis Testing with Correlation Coefficients

corydon
Download Presentation

Confidence Intervals and Hypothesis Testing with Correlation Coefficients

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Confidence Intervals and Hypothesis Testing with Correlation Coefficients

    2. Inspecting Scatterplots :The Bivariate Normal Distribution

    3. Inspecting Scatterplots :The Bivariate Normal Distribution

    4. Inspecting Scatterplots :The Bivariate Normal Distribution

    5. Confidence Intervals for Correlation Coefficients

    6. Confidence Intervals for Correlation Coefficients Biased and Unbiased estimators

    7. Confidence Intervals for Correlation Coefficients r is a sample statistic and r is a population parameter that represents the correlation between two variables (X and Y) in the population. Confidence intervals for correlations must be computed differently from confidence intervals about means (or mean differences) because the sampling distribution of r is skewed, particularly as r approaches 1 and -1.

    8. Confidence Intervals for Correlation Coefficients To deal with this problem we use the Fisher r-to-Zr transformation. Formally Zr = 0.5 loge [(1 + r)/(1 - r)] or, you can look it up in tables (Handout) or, use the function Fisher(r) in Excel to find Zr and FisherInv(Zr ) to find r. The advantage of Zr is that its sampling distribution is normal.

    9. Confidence Intervals for Correlation Coefficients We next ask: what is the standard error of Zr? SEZr = or Because Zr is normally distributed and its standard error(SEZr) is defined, we can place a 95% confidence interval around Zr as follows CI = Zr 1.96 (SEZr ) The limits of the CI can then be converted back to rs using FisherInv (Zr) in Excel.

    10. Confidence Intervals for Correlation Coefficients

    11. Testing whether r is different from 0 When r = 0 and the sample size is relatively large, the sampling distribution of r will be normal with a standard error of which can be estimated by Therefore, we can calculate a t-statistic for a correlation coefficient as:

    12. Testing whether r is different from 0

    13. Testing whether r is different from 0

    14. Testing whether r is different from 0

    15. Testing whether r is different from 0

    16. Testing whether r is different from a known r When r ? 0 the sampling distribution of r will not be normal (in general) so the Fisher transform is used. Non-directional test (that r = .5, a = .05)

    17. Testing whether r is different from a known r When r ? 0 and the sampling distribution of r will not be normal (in general) so the Fisher transform is used. Directional test (that r > .5, a = .05)

    18. Testing whether r is different from a known r

    19. Testing whether r is different from a known r

    20. Testing whether two independent correlations differ from each other Again, r is converted to Zr and the z-distribution is consulted

    21. Testing whether two independent correlations differ from each other

    22. Testing whether two independent correlations differ from each other

More Related