1 / 50

ICRF scenarios for ITER’s half-field phase

ICRF scenarios for ITER’s half-field phase. E. Lerche, D. Van Eester and JET-EFDA contributors 19th Topical Conference on RF power in Plasmas, Newport 2011. ICRF scenarios for ITER’s half-field phase.

courtney
Download Presentation

ICRF scenarios for ITER’s half-field phase

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICRF scenarios for ITER’s half-field phase E. Lerche, D. Van Eester and JET-EFDA contributors 19th Topical Conference on RF power in Plasmas, Newport 2011

  2. ICRF scenarios for ITER’s half-field phase E. Lerche1, D. Van Eester1, J. Ongena1, M.-L. Mayoral2, T. Johnson3, T. Hellsten3, R. Bilato4, A. Czarnecka5, R. Dumont6, C. Giroud2, P. Jacquet2, V. Kiptily2, A. Krasilnikov7, M. Maslov8, V. Vdovin9 and JET EFDA Contributors* JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK 1 LPP-ERM/KMS, Association Euratom-‘Belgian State’, TEC Partner, Brussels, Belgium 2 Euratom-CCFE Fusion Association, Culham Science Centre, UK 3 Fusion Plasma Physics, Association Euratom-VR, KTH, Stockholm, Sweden 4 Institut für Plasmaphysik (MPI)-Euratom Association, Garching, Germany 5 Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland 6 CEA(IRFM)-Euratom Association, Saint-Paul-lez-Durance, France 7 SRC RF Troitsk Institute for Innovating and Fusion Research, Troitsk, Russia 8 Centre de Recherches en Physique des Plasmas, Association EURATOM-Conf. Suisse, Lausanne, CH 9 RNC Kurchatov Institute, Nuclear Fusion Institute, Moscow, Russia *See the Appendix of F. Romanelli et al., paper OV/1-3, IAEA Fusion Energy Conference, Daejeon, 2010

  3. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  4. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  5. ITER half-field H plasmas (L-mode) • Plasma: ~80%H, (He3) , 2%Be, … • B0=2.65T, IP=7.5MA (L-mode) • Auxiliary power: • 16.5MW H-NBI (elec/ion = 80/20) • 15.0MW ECRH • 10MW ICRH (elec/ion = 50/50) n  3x1019/m3 L2 ICRH (?) T  8-10keV L1 ASTRA [A.Loarte, P.Lamalle]

  6. ICRF scenarios for ITER at B0=2.65T N=1 H (~40MHz) N=1 H (either H or 4He plasmas) N=3 D (N=2 D) N=2 He3 N=2 3He (~53MHz)

  7. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  8. JET experiments in H plasmas at B0=2.65T N=2 He3 N=1 H N=2 D N=3 D N=1 H majority ICRH [f=42MHz, Bo=2.65T] N=2 3He ‘minority’ ICRH [f=51MHz, Bo=2.65T] JET JET ITER ITER N=2 D N=1 He3 N=2 He3 N=1 H N=2 3He N=1 H

  9. JET experiments in H plasmas at B0=2.65T L1=L2 L2 L1 JET • B0=2.65T (ITER), IP=1.5MA (<<ITER) • Similar Ne but lower T than ITER • ICRF power up to 6MW (ITER 10MW) • NBI: D-beams instead of H-beam (ITER non-active phase)

  10. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  11. N=1 Hydrogen majority ICRH (f=42MHz) #79332: B=2.67T, f=42.50MHz TOMCAT H N=2 D e- Power absorption N=1 He3 N=2 He3 N=1 H • Initial remarks: • Low absorptivity scenario • Electron absorption dominant • No He3 !

  12. Typical N=1 H pulse (f=42MHz) JPN 79335 • Weak energy response to RF power step (low absorbtivity) • Considerable radiation losses (DPrad / DPICRH ≈ 1/3)

  13. ICRF Heating efficiency RF Power absorption elecs (KK3) electrons ions ions (CXRS) h = 0.3-0.4 TOMCAT Heating efficiency increases with plasma temperature Absorbed power electrons ions

  14. PICRH dependence Central temperatures 1 PINI = 1.3MW NBI 2 PINIs = 2.6MW NBI Ti Te ~0.1keV/MW ~0.1keV/MW Poor performance compared to similar (H)-D ICRF expts. B0=2.7T (H)-D (JET) ~1keV/MW

  15. RF acceleration (NPA) Horizontal neutral particle analyzer (KR2) PRF=2.5MW PRF=5MW H H Very modest tails if compared with minority ICRH experiments • No clear effect of ICRF on D distribution • (Hints of fast H with E~200keV in KF1) SKIP if NEEDED

  16. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  17. N=2 He3 ICRH (f=51MHz) #79357: B=2.66T, f=51.50MHz TOMCAT X[3He]=5% Power absorption N=1 H N=2 He3 N=2 D N=3 D • Initial remarks: • Low absorptivity scenario • Largely dominant electron heating at low X[He3] • Ion heating enhanced for higher X[He3] • D-beams: N=2 / 3 parasitic absorption

  18. Typical N=2 He3 pulse 4Hz JPN 79359 ~4MW X[He3] RTC ~2MW elec elec + ion • X[3He]<20%: only elec heating • X[3He]>20%: elec + ion heating • Large radiation losses (DPrad / DPICRH ≈ 1/2)

  19. ICRF heating efficiency Global heating efficiency (Wpla) JPN 79359 nkTe+nkTi TOMCAT • 2x larger heating efficiency at • X[3He]=20% (w.r.t. 5-10%) • Efficiency increase is due to • enhanced ion absorption total Absorbed power ions elecs

  20. X[He3] dependence(2 PINIs , PICRH ~ 2.5MW) Overall performance increase (PICRH ~ 2.5MW) • (Equilibrium) plasma energy and temperature increase with X[3He]

  21. PICRH dependence (1 PINI, X[He3]=10-18%) Central temperatures Ti Te ~0.25keV/MW ~0.2keV/MW • Better performance than N=1 H maj. expts. • Poor performance compared to similar • (H)-D ICRF expts. B0=2.7T (H)-D (JET) ~1keV/MW

  22. RF acceleration (NPA) Horizontal NPA (KR2) He3 D • Dominant 3He RF acceleration for E<160keV • Dominant (N=3) RF acceleration of D (beam) ions for E>160keV [V.Kiptily, to appear in PPCF]

  23. Impurities: N=1 H vs. N=2 He3 Ni Be Higher impurity content in N=2 3He discharges Bolom C6 C4 • Higher radiation from plasma edge / divertor • Confirmed by 2D bolometric tomography [A.Czarnecka, to appear in PPCF]

  24. Summary of JET experiments N=1 H ICRH • Low heating efficiency (h = 0.3 - 0.4) • Dominant electron heating: pe 2 x pi (LD + TTMP) • Modest H acceleration (up to 50keV) registered by NPA • Negligible parasitic N=2 D absorption • Poor global heating: ~0.1keV/MW • Considerable plasma-wall interaction (DPrad/DPICRH ≈ 1/3) N=2 He3 ICRH • Low heating efficiency (h = 0.15 – 0.4, increasing with X[He3]) • Largely dominant electron heating for low X[He3] (mainly LD + TTMP) • Ion absorption proportional to X[He3]: dominant for X[He3] > 20% • Fast He3 (up to 250keV) detected by NPA • Clear parasitic D absorption with PNBI>5MW • Poor global heating: ~0.2keV/MW • Strong plasma-wall interaction (DPrad/DPICRH ≈ 1/2,  impurities, etc…)

  25. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  26. Preliminary ITER modelling • Objectives: • - Intuitive picture of relative RF absorptivity • (SPA) of the various heating scenarios • - Parametric scans for preliminary optimization • More ‘rigorous’ numerical efforts • [R. Budny, IAEA2010, to appear in NF2011] 1D TOMCAT code [Van Eester, PPCF98]

  27. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  28. Fundamental H majority ICRH (42MHz) E+ electric field TH 8keV w=WH • E+ 0 @ w=WH (‘screening’) • Low absorptivity scenario (m = 0.3 - 0.4) • Dominant electron heating (broad absorption) • Higher TH helps ion absorption • Possible 3He absorption (if present) TH 25keV

  29. Parametric scan n=34 (0pp0) L-mode 2: T =8/10keV ITER ITER • Higher TH yields higher absorption (ions) • Higher ne yields higher absorption (elecs) • pe = pi @ TH  20keV

  30. N=2 3He ‘minority’ ICRH (53MHz) E+ electric field X[3He]=4% w=WH w=2WHe3 • Larger E+ at w=2WHe3 • Low absorptivity scenario (m = 0.25 - 0.4) • Dominant electron heating (broad absorption) • Ion heating enhanced at higher X[3He] • Possible N=1 H (N=2,3 D) absorption X[3He]=25%

  31. Parametric scan n=34 (0pp0) L-mode 2: T =8/10keV ITER ITER • Higher X[3He] yields higher absorption (ions) • Higher ne yields higher absorption (elecs) • pe = pi @ X[3He]  30%

  32. Do we have an ICRH scenario for H plasmas? N=2 H majority ICRH at 1/3 nominal field (B0=1.8T) E+ electric field N=2 H (N=3 D) pH = 70% pe = 30% • Full single-pass absorption (m=1) • Dominant ion heating • But ECRH out of range, confinement (?) • Could be used for fast particle studies

  33. Outline - Motivation  ICRF scenarios for initial operation phase of ITER (non-activated, half-field) - Summary of main results of JET experiments (H plasmas)  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH - Preliminary modelling of half-field ICRH scenarios H plasmas:  N=1 H majority ICRH  N=2 3He ‘large minority’ ICRH 4He plasmas:  (Standard) N=1 H ‘minority’ ICRH  Impact of H concentration (H-pellet’s) - Summary & Discussion

  34. N=1 H–4He minority ICRH (42MHz) n=34 (0pp0) L-mode 2 E+ electric field w=WH • Good absorption scenario (m = 0.7 – 1.0) • Dominant ion heating (for moderate X[H]) • Ion absorption decreased at higher X[H]

  35. N=1 H–4He minority ICRH (42MHz) L-mode 2: T =8/10keV L-mode 1: T =4/5keV n=34 (0pp0) n=34 (0pp0) n=60 (0p0p) • Ion absorption is reduced at higher X[H] (‘screening effect’) • This effect is stronger at lower temperatures (L-mode 1): • Operating at high k// phasing (0p0p) helps • Accounting for tail formation does not alter the behaviour at high X[H] • No MC absorption (1D and 2D)

  36. N=1 H–4He minority ICRH (42MHz) Comparison with 2D wave codes EVE code [R.Dumont, NF2009] E+ E+ X[H]=5% X[H]=45% Pabs Pabs • Electron absorption slightly overestimated in 1D calculations • Unlike for the H plasmas (touchy), for the better absorbing (H)-D scheme 2D calculations are converged

  37. SPA vs. heating efficiency Simple multi-pass model mloss=0.1 mpla=0.5 (4He plasmas) mloss=0 Power ITER JET (H plasmas)

  38. Summary of ITER modelling N=1 H majority ICRH • Moderate absorptivity (m~0.5) → significant PWI? [seen in JET] • Dominant electron heating [seen in JET] • Increasing temperature favours ion heating [seen in JET] but pe=pi @ 25keV • Increasing density favours overall heating (electron heating dominant) N=2 3He–H ICRH • Low absorptivity (m~0.3)  significant PWI? [seen in JET] • Largely dominant electron heating except for high X[He3] [seen in JET] • Increasing X[He3] favours ion heating [seen in JET] but pe=pi @ X[He3]~30% • Increasing temperature has small effect • Increasing density favours overall heating (electron heating dominant) N=1 H-4He ICRH • Good single-pass absorption (m>0.7) with dominant ion heating (X[H]<25%) • ICRF efficiency lower for larger X[H], partic. at lower temperature (L mode-1) • This effect can be compensated with higher k// phasing (0p0p)

  39. Final remarks • H plasmas: • Both ICRF scenarios proposed for ITER’s half field phase in H suffer from low power absorptivity with dominant electron heating: • - N=1 H majority requires high plasma temperatures • - N=2 3He requires large X[3He] for efficient ion heating • This DOES NOT mean that they are not suited for the commissioning of the ICRF system, but the power may be limited (enhanced PWI) • One possible ICRF scenario with good ion absorption is N=2 H majority at 1/3 of the nominal B0 (but ECRH is out of range) • 4He plasmas: • (H)-4He minority ICRH is OK for moderate X[H] (<40%) • At higher X[H] the ion absorption is jeopardized, particularly at low T • Operating at higher k// phasing (e.g. 0p0p) helps recovering good absorption in general (but lower coupling)

  40. Final remarks • Wave modelling: • Low absorption H-plasma scenarios require further modelling (touchy!) • (H)-4He ICRF scenario well converged but further simulations at high X[H] welcome • Integrated scenario modelling: • Use experimental heating efficiencies / SPA’s obtained for assessing which DT can actually be expected in ITER’s half-field H-plasma phase • Use realistic power absorption profiles in all cases (broader elec. absorption) • Experiments: • High X[H] ICRH experiments in 4He plasmas (B0=2.65T, f=42MHz)

  41. Discussion

  42. EXTRAS

  43. Impurities: N=1 H vs. N=2 He3 (KS3) Bolom Zeff Be Cr Ni Higher impurity content in N=2 3He discharges [A.Czarnecka, to appear in PPCF]

  44. Impurities: N=1 H vs. N=2 He3 (KT2/7) VUV spectroscopy (KT2/KT7) C4 C6 N=1 H N=2 3He • Higher radiation losses in N=2 3He scenario come from plasma edge / divertor • Confirmed by 2D bolometric tomography

  45. Effect of antenna phasing Fundamental H majority ICRH (42MHz) coax • Larger k// yields higher absorption • pe / pi roughly independent of k// coax [A. Messiaen NF2010]

  46. Effect of antenna phasing Fundamental H majority ICRH (42MHz) X[3He]=4% • Low X[3He]: • Larger k// yields higher absorption (elecs only) coax X[3He]=30% • High X[3He]: • Low k// → ion heating • Large k// → elec. heating coax

  47. Plasma dilution N=1 H majority ICRH  Effect of H dillution (4He contamination) (PICRF=5MW) Wdia NPA on H no NBI 1 PINI no NBI 1 PINI X[4He] X[4He] • Preliminary modelling shows same tendency (but weaker) • Important to re-assess experimentally

  48. RF acceleration (NPA) Horizontal NPA (KR2) 3He D • Relatively modest acceleation of 3He ions (E<160keV) (hints on KF1 E<260keV) • Clear RF acceleration of D (beam) ions above beam source energy

  49. RF acceleration (ion losses) Scintillator probe (KA3) [V.Kiptily] t=46s D 3He • Main losses come from RF accelerated D beam ions • Small fast 3He losses (No hints fast 3He detected by g-spectroscopy)

  50. Simple comparison with other scenarios N=1 H majority DT/DP  0.1keV/MW H minority in D (ILA) N=2 He3 DT/DP  0.2keV/MW N=1 D majority (B0=3.3T, f=25MHz) DT (keV) ~1keV/MW PICRH(MW) ~0.5keV/MW

More Related