180 likes | 248 Views
Delve into the fundamentals of biopotential electrodes, the interface problem, instrumentation, measurement, and analysis from 2011-2012. Learn how to sense a signal where no electron flow is passing the interface but metal cations are leaving into the electrolyte. Explore topics like electrode potentials, Nernst equation, overpotential, polarizable and nonpolarizable electrodes, chemical reactions, and equivalent circuits in electrode-electrolyte systems.
E N D
Biopotential electrodes A complex interface Basics of Instrumentation, Measurement and Analysis 2011, 2012
the interface problem To sense a signala currentImust flow ! But no electron e- ispassing the interface!
metal cation leaving into the electrolyte No current One atom M out of the metal is oxidized to form one cation M+and giving off one free electron e-to the metal.
metal cation joining the metal No current One cation M+out of the electrolyte becomes one neutral atom M taking off one free electron from the metal.
metal: Li Al Fe Pb H Ag/AgCl Cu Ag Pt Au Vh / Volt -3,0negativ 00,223positiv1,68 half-cell voltage No current, 1M salt concentration, T = 25ºC
Nernst equation For arbitrary concentration and temperature E = RT/(zF)·ln(c/K)E – electrode potential R = 8.314 J /(mol*K) – molar gas constantT – absolute temperature z – valence F = 96485 C/mol – Faraday’s constant c – concentration of metal ion in solution K – “metal solution pressure”, or tendency to dissolve
electrode double layer No current
concentration (change in double layer) ohmic (voltage drop) current influence • withcurrent flowing the half-cell voltage changes • this voltage change is calledoverpotential orpolarization: Vp = Vr + Vc + Va activation, depends on direction of reaction
polarizable electrode • “perfectly” polarizable electrode:- only displacement current, electrode behave like a capacitor • example: noble metals like platinum Pt
nonpolarizable electrode • “perfectly” nonpolarizable electrode:- current passes freely across interface,- no overpotential • examples: - silver/silver chloride (Ag/AgCl),- mercury/mercurous chloride (Hg/Hg2Cl2) (calomel)
chemical reactions silver / silver chloride
electrical behaviour equivalent circuit
equivalent circuit electrode-electrolyte
more precise approximation of double layer – Randles circuit electrode-electrolyte Rct – active charge transfer resistance W – Warburg element reflecting diffusionwith impedance ZW=AW/(jω)0.5 AW – Warburg coefficient