250 likes | 475 Views
国外著名有机化学家简介. 讲演人. 化学 02 班 谢鑫 002429. 化学 02 班 白楠 002432. Stuart L. Schreiber. POZITION Director , Harvard Institute of Chemistry & Cell Biology Investigator , Howard Hughes Medical Institute Morris Loeb Professor and Chair , Chemistry & Chemical Biology
E N D
国外著名有机化学家简介 讲演人 化学02班 谢鑫 002429 化学02班 白楠 002432
Stuart L. Schreiber POZITION Director, Harvard Institute of Chemistry & Cell Biology Investigator, Howard Hughes Medical Institute Morris Loeb Professor and Chair, Chemistry & Chemical Biology Director, Bauer Center of Genomics Research
Honors And Awards RECEIVED 30 AWARDS BETWEEN 1985-2000 Some main prize • NSF presidential young investigator award, 1985; • Thieme-IUPAC award in synthetic organic chemistry, 1992; • Eli Lilly award in biological chemistry, ACS, 1993; • Dupont Merck young investigator award of the protein society, 1995; • Tetrahedron prize for creativity in organic chemistry, 1997; • Derek Barton medal, 1999; • Alfred Bader award in bioorganic and bioinorganic chemistry, ACS, 2000;
Thieme-IUPAC Award in Synthetic Organic Chemistry The Thieme-IUPAC Prize is awarded every two years on the occasion of IUPAC's International Conference on Organic Synthesis (ICOS) to a scientist under 40 years of age, whose research has had a major impact on the field of synthetic organic chemistry. The Prize is sponsored jointly by Georg Thieme Verlag, IUPAC, and the Editors of Synthesis, Synlett, Science of Synthesis, and Houben-Weyl.
Thieme-IUPAC Prize in Synthetic Oraganic Chemistry
Schreiber’s Research Biologists study pathways and networks by perturbing them and observing the result. Whereas these perturbations most often result from mutations in genetic investigations, they can also result from small organic molecules. Numerous examples exist of small molecules being used to explore immunology, yet these examples have been brought to light generally on a case-by-case basis. Rather than using small molecules on an ad hoc basis, Stuart Schreiber's laboratory is attempting to use them in a systematic way, so that virtually any area of biology can be examined with small molecules.
Schreiber’s Research Beginning in the mid-1980‘s, Schreiber and his co-workers studied the molecular mechanisms of the immunosuppressive agents cyclosporin(环孢菌素), FK506 and rapamycin(雷伯酶素), which led to new insights into two signaling networks central to hematopoietic cell function. Using a synthetic analog of FK506, they were able to show that these immunosuppressants “bridge” two proteins. Both the complex of cyclosporin (环孢菌素)with its receptor, cyclophilin(亲环蛋白), and the complex of FK506 with its receptor, FKBP12, bind the same protein, the protein phosphatase calcineurin(磷酸酶神经储钙蛋白). This discovery, together with Gerald Crabtree's discovery of NFAT proteins, now known to be essential for immune function, heart development, and the acquisition of memory in the hippocampus.
Schreiber’s Research Combining synthetic organic chemistry and cell biology, Schreiber and co-workers co-discovered the mammalian protein FRAP, the target of the complex between FKBP12 and rapamycin, and unraveled its role as a metabolic sensor and a regulator of cell's response to nutrients. FRAP and its yeast orthologs Tor1p/2p are now recognized as the founding members of a family of proteins called the PIK-related kinases (ATM, ATR, DNA-PK), which act as intracellular sensors monitoring a number of different cellular pathways.
Papers & Publications 1."Chemistry and Biology of the Immunophilins and Their Immunosuppressive Ligands" S. L. Schreiber, Science 1991, 251, 283-287. 2."Three-Part Inventions: Intracellular Signaling and Induced Proximity" Gerald R. Crabtree and Stuart L. Schreiber, TIBS 1996, 21, 418-422 3."Chemical Genetics Resulting from a Passion for Synthetic Organic Chemistry" Stuart L. Schreiber, BioMed Chem. 1998, 6, 1127-1152. 4."Target-Oriented & Diversity-Oriented Organic Synthesis" S L Schreiber Science 2000, 287, 1964-69.
Connection Tel: 617-495-5318 Fax: 617-495-0571 E-mail:sls@slsiris.harvard.edu Group Websitehttp://www-schreiber.chem.harvard.edu/
Dieter Seebach Dieter Seebach has been Full Professor at the Organic Chemistry Laboratory of the ETH Zurich since 1977. Dieter Seebach was born in 1937 in Karlsruhe(卡尔斯鲁厄), Germany. He has studied chemistry at the University of Karlsruhe and Harvard University.
Dieter Seebach He returned to Karlsruhe and earned habilitation in 1969 with a thesis on S and Se stabilized carbanion and carbene derivatives. In 1971 he was called to the Justus Liebig University in Giessen and in 1977 to the ETH Zurich. He has been a guest professor at the Universities of Madison, Strasbourg, Munich (TU), Kaiserslautern, Frankfurt and at Caltech, Pasadena, as well as at the Max Planck Institute in Mulheim.
Dieter Seebach Prof. Seebach is a member of the New Swiss Chemical Society and comparable associations in Germany, Great Britain, Japan and the USA. He also belongs to the German Academy of Natural Science Research Leopoldina and is a corresponding member of the Academy of Sciences and Literature in Mainz, and is an elected member of the Schweizerische Akademie der Technischen Wissenschaften.
Honors And Awards 1984–FRSC Fellow of the Royal Society of Chemistry, U.K. Visiting Professorship: 1974– California Institute of Technology, Pasadena, USA 1980-Imperial College, London, U.K. 1981-Max-Planck-Institut Lectureship: 1981-University of Minnesota, Minneapolis, USA 1982-University of Illinois, Urbana-Champaign, USA 1982-Princeton University, Princeton, USA 1984-University of Manchester, U.K. 1986-University of Chicago, USA 1986-University of Michigan, Ann Arbor, USA
Honors And Awards 1986-The University of California, Berkeley, USA 1988-University of North Carolina at Chapel Hill, USA 1988-The University of Wisconsin, Madison, USA 1989-Massachusetts Institute of Technology, Cambridge, USA 1990-Harvard University, Cambridge, USA 1990-Ohio State University, Columbus, USA 1990-University of California, Irvine, USA 1990-Columbia University, New York, USA 1992-Duke University, Durham, NC, USA University of Cambridge, Cambridge, U.K. Yale University, New Haven, USA 1996-Kansas University, Lawrence, USA 1997-Cornell University, Ithaca, NY, USA 2002-Stanford University, Stanford, CA, USA
Seebach’s Research His work focuses on the development of new synthesis methods; production and secondary structure examination of beta peptides; the synthesis of oligomers in (R)-3 hydroxybutyric acid(羟丁酸)and the respective biopolymers as well as their application possibilities; the synthesis of chiral dendrimers(树枝状大分子)and the use of chiral titanates in organic synthesis.
Seebach’s Research Synthesis, Structural Investigations and Biological Evaluation of Oligomers of Beta-Amino Acids Investigations of the Biopolymer PHB and of related Oligo(3-hydroxyalkanoates) Enantioselective Reactions(对映选择性反应)Using Transition Metal Complexes
Connection Prof. Dr. Dieter Seebach Laboratory of organic chemistry ETH Hoenggerberg, HCI CH-8093 Zuerich, Switzerland Tel : +41-1-632 2990 Fax: +41-1-632 1144 E-ail :mailto:seebach@org.Chem.ethz.Ch
David Evans David Albert Evans was born in Washington D.C. in 1941. He received his A.B. degree from Oberlin College in 1963. He obtained his Ph.D. at the California Institute of Technology in 1967.In that year he joined the faculty at the University of California, Los Angeles.
David Evans In 1973 he was promoted to the rank of Full Professor and shortly thereafter returned to Caltech where he remained until 1983. In 1983 he joined the Faculty at Harvard University and in 1990 he was appointed as the Abbott and James Lawrence Professor of Chemistry. In July of 1998 he completed his three-year term as chair of the Harvard Department of Chemistry and Chemical Biology.
Honors And Awards Professor Evans is a recipient of numerous honors such as the ACS Award for Creative Work in Synthetic Organic Chemistry (1982), and the Arthur C. Cope Scholar Award (1988), the Yamada Prize (1997), the Tetrahedron Prize (1998), the Robert Robinson Award (1998), the Prelog Medal (1999), and the Arthur C. Cope Award (2000). He was elected into the National Academy of Sciences in 1984, the American Academy of Arts and Sciences in 1988 and the Royal Society of Chemistry in 2001.
Honors And Awards He is currently a consultant with Merck Research Laboratories and with Oxford Asymmetry. He has been on the Advisory Boards of The Journal of the American Chemical Society, Tetrahedron, Tetrahedron Letters, and Topics in Stereochemistry. Currently, he is on the Advisory Boards of Organic Letters and Current Opinion in Bio-organic Chemistry, London, UK
Evans’ Research Evans has made fundamental advances in the design of stereoselective reactions and the applications of these reactions to natural products synthesis.
Significant Advances in Reaction Methodology In the area of synthesis design, Evans was the first to achieve the de novo synthesis of complex natural products through the exclusive use of chiral auxiliaries to control stereochemical relationships. This represented a dramatic departure from the more prevalent reliance on the "chiral pool" for the origins of absolute stereocontrol within the target structure. Evans' chiral auxiliaries and chiral catalysts for enantioselective bond constructions are widely used in both industrial and academic laboratories throughout the world.