1 / 72

Genoma

Genoma. trascrittoma. Proteoma. 07_20_Pro_v_Eucar.jpg. Il destino di un mRNA che raggiunge il citoplasma è di essere tradotto in proteina . Anche a questo livello più meccanismi partecipano alla regolazione dell’espressione genica. Costituenti e fasi della traduzione

crozier
Download Presentation

Genoma

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Genoma trascrittoma Proteoma

  2. 07_20_Pro_v_Eucar.jpg

  3. Il destinodi un mRNA cheraggiungeilcitoplasma è diesseretradotto in proteina. Anche a questolivellopiùmeccanismipartecipanoallaregolazionedell’espressionegenica.

  4. Costituenti e fasi della traduzione Struttura e funzione del ribosoma Struttura e funzione del tRNA Le aminoaciltRNAsintetasi Poliribosomi Inibitori della sintesi proteica: antibiotici, tossine e RNA interferenti TRADUZIONE

  5. Caratteristiche del codice genetico • 4 basi --> 20 amino acidi. No rapporto 1:1 • “Codone” 3 basispecificaogniaminoacido • 43 = 64 combinazioni • 64 > 20 – ilcodicegenetico è DEGENERATO : >1 codone/amino acido • ilcodice è lettosequenzialmente e non è sovrapposto : cornice di lettura

  6. U C A G Open Reading Frame (ORF) Phe Ser Tyr Cys U Phe Ser Tyr Cys C Leu Ser STOP STOP A Leu Ser STOP Trp G Leu Pro His Arg U Leu Pro His Arg C Leu Pro Gln Arg A Leu Pro Gln Arg G Ile Thr Asn Ser U Ile Thr Asn Ser C Ile Thr Lys Arg A Met Thr Lys Arg G Val Ala Asp Gly U Val Ala Asp Gly C Val Ala Glu Gly A Val Ala Glu Gly G U C A G 5’ 3’ AUG CUC AGC GUU ACC UCA GCG UUA CCA UCU UAA CCG Met Leu Ser Val Thr Ser Ala Leu Pro Ser Stop

  7. Deciphering the Code • Add Poly(U) RNA to “cell-free translation system” • Extract of E. coli (gently break open cells), add Dnase. Extract contains ribosomes, enzymes, ATP, GTP, etc. • Examine Polypeptide chain: poly(Phe) • UUU must be codon for Phe • Similarly, AAA = Lys, CCC=Pro, etc. • Eventually chemical synthesis of RNA allowed: • UCUCUCUCUC --> Ser-Leu-Ser-LeuUCU = Ser, CUC = Leu (only 2 reading frames exist) • UACUACUAC --> combination of poly(Tyr), poly(Thr), poly(Leu)UAC = Tyr, ACU=Thr, CUA=Leu • Etc.

  8. Features of the Genetic Code • Degenerate • Arg, Leu, Ser have 6 codons • Most aa have 4 codons • Met and Trp have only 1 • Non random – • Usually codons that only differ at 3rd position code for the same aa. (Silent base changes)

  9. U C A G Open Reading Frame (ORF) Phe Ser Tyr Cys U Phe Ser Tyr Cys C Leu Ser STOP STOP A Leu Ser STOP Trp G Leu Pro His Arg U Leu Pro His Arg C Leu Pro Gln Arg A Leu Pro Gln Arg G Ile Thr Asn Ser U Ile Thr Asn Ser C Ile Thr Lys Arg A Met Thr Lys Arg G Val Ala Asp Gly U Val Ala Asp Gly C Val Ala Glu Gly A Val Ala Glu Gly G U C A G 5’ 3’ AUG CUC AGC GUU ACC UCA GCG UUA CCA UCU UAA CCG Met Leu Ser Val Thr Ser Ala Leu Pro Ser Stop

  10. Features of the Genetic Code • AUG is the start codon • First codon in the translated region of a gene is AUG. • Codes for Met. In some cases Met gets cleaved. • STOP codons: UAG (amber) UAA (ochre), UGA (opal). • Signal termination of the peptide chain. • Code is identical in most organisms. • But, code is not universal • Mitchondria (and chloroplasts) have their own transcription/translation machinery. • They have their own code: AUA &AUG code for Met ,UGA codes for Trp (not stop) AGA & AGG are stop codons (not Arg), etc.

  11. Il codicegenetico è costituito da triplette e puòessereletto con diverse cornici di lettura(openreadingframes, ORFs) U

  12. The three potential reading frames of an mRNA. Each reading frame would yield a different polypeptide.

  13. Reading Frames • A single base deletion changes entire protein sequence that gets made, by changing the reading frame. HER DOG HAS ONE LEG HED OGH ASO NEL EG 1 base deletion Compensating mutations can preserve “meaning” (i.e. protein function) THE DOG HAS ONE LEG1 base insertion • or alter it HER DOG HAS ONE LEG HER DGH ASO NEL EG 1 base deletion SHE RDG HAS ONE LEG 1 base insertion Two more deletions will also restore reading frame, but are more likely to alter meaning SHE HAS ONE LEG 3 base deletion

  14. 3’ 5’3’ 5’ 3 2 1 1 2 3

  15. U C A G Phe Ser Tyr Cys U Phe Ser Tyr Cys C Leu Ser STOP STOP A Leu Ser STOP Trp G Leu Pro His Arg U Leu Pro His Arg C Leu Pro Gln Arg A Leu Pro Gln Arg G Ile Thr Asn Ser U Ile Thr Asn Ser C Ile Thr Lys Arg A Met Thr Lys Arg G Val Ala Asp Gly U Val Ala Asp Gly C Val Ala Glu Gly A Val Ala Glu Gly G U C A G Transfer RNA (t-RNA) 3’-CUU-5’ 5’-UUC-3’

  16. Transfer RNA (t-RNA) 3’-CUU-5’ 5’-UUC-3’ Phe

  17. Features of tRNA • 5’ Phosphate • 7 bp amino acid acceptor stem (complementary bp) • D arm, TC arm, variable arm (size, sequence) • Anticodon arm & Anticodon. • Many modified bases • Folds to complex, compact 3D structure with “L” shape

  18. tRNA

  19. tRNA Conserved Structure • Stabilized by base-pairing and long-range interactions between non-continguous parts of arms and loops • Most interactions are between invariant or conserved bases • Buries most of tRNA except acceptor stem, aa, anticodon

  20. tRNA

  21. Caricamento del tRNA con l’amminoacido

  22. AA (Trp) high-energy bond t-RNA (Trp) codon-anticodon base pairing Aminoacyl- tRNAsynthetase (Trp) mRNA

  23. Le due fasipiùimportanti del processo di decodificazione. 1- Caricamento del tRNA con l’amminoacido (attivazione) 2- Appaiamentoanticodone/codonenelribosoma amminoacido tRNA tRNA sintetasi

  24. Le Aminoacil-tRNAsintetasiattivanoitRNAs con specifici amino acidi Una singola e specificaaminoacil-tRNAsintetasi (ARS) riconoscetuttiitRNA per un dato a.ac.

  25. Costituenti principali dell’officina traduzionale: mRNA La sequenza codificante è solo una porzione del mRNA - dal primo codone tradotto (AUG) al primo codone di stop (UAG,UGA,UAA). Le sequenze adiacenti quella codificante sono definite regioni non tradotte (UTR) 5’ e 3’

  26. 07_28_ribosome.jpg 40s 60s

  27. Ribosomi • Small organelles, site of polypeptide synthesis • Abundant: up to 20,000 ribosomes per cell in E. coli • Enormous, complex • Several large RNAs plus >80 proteins • Functions: • Binds mRNA so codons can be read • 3 binding sites for tRNAs • Binding, interaction of other (non-ribosomal proteins) that promote Initiation, Elongation, Termination • Catalyzes peptide bond formation • Translates along mRNA • Old View: RNA scaffold, Proteins carry out peptide synth. • New View: Ribosome is a ribozyme; proteins are present at every region except where peptide sythesis occurs. Proteins are “mortar” to stabilize RNA helices and hold together.

  28. L’assemblaggio delle due subunità avviene nel nucleolo

  29. Structure of 80S ribosome from yeast. Proteins and RNA of small subunit are colored in blue, and large subunit is colored in yellow. Expansion segments are colored in red.

  30. Ribosome Structure • Ribosome has 3 binding sites for tRNAs • A– Aminoacyl site – incoming aminoacyl tRNA • P– peptidyl site– tRNA to which growing chain is attached • E – exit site – deacylatedtRNA • Channel for 1 mRNA, to align codon w/ anticodon.

  31. P-site E-site A-site Aminoacyl-t-RNA Peptidyl-t-RNA Exit

  32. A,P,E sites on ribosome subunits

  33. Amino terminus Carboxy terminus

  34. Initiation Elongation Termination

  35. Initiation (eukaryotes)

  36. 3’ poly(A) tail mRNA Initiation factors AUG AUG 40S ribosomal subunit + initiation factors 5’ Cap structure 60S ribosomal subunit Initiation (eukaryotes) Linear scaning

  37. Aminoacyl-t-RNA Elongation Peptidyl-t-RNA Elongation factors: EF-Tu (EF-1) (*GTP) EF-G (EF-2) (*GTP) Peptidyl transferase Translocation 7.8

  38. Il film della traduzione 7.7

  39. Elongation • 2) transpeptidation: Peptide bond created and chain transferred to tRNA in A site Reaction catalyzed by 23S rRNA of Large subunit. “ribozyme” (RNA world)

More Related