1 / 69

Models and Non Standard Model with Neutrinos

Models and Non Standard Model with Neutrinos . Pilar Hernández University of Valencia/IFIC. SM + massive n s. Fogli et al 2012 (after T2K, Double-CHOOZ, Daya Bay, RENO ). 3 n mixing:. Standard 3 n scenario. The flavour observables:. Good prospects for CP volation.

crwys
Download Presentation

Models and Non Standard Model with Neutrinos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Models and Non Standard Model with Neutrinos Pilar Hernández University of Valencia/IFIC

  2. SM + massive ns Fogli et al 2012 (after T2K, Double-CHOOZ, Daya Bay, RENO) 3nmixing:

  3. Standard 3n scenario The flavour observables:

  4. Goodprospectsfor CP volation Coloma, Donini, Fernandez-Martinez,PH arXiv:1203.5651

  5. New dofs puzzle Neutrinos are massive -> there must be new dofs in the SM

  6. New dofs puzzle Neutrinos are massive -> there must be new dofs in the SM Weinberg

  7. SM ? nSM

  8. The good nSM • Explanation for the neutrino-charged lepton hierarchy

  9. Thenflavour puzzle I Why are neutrino masses so light ?

  10. The good nSM • Explanation for the neutrino-charged lepton hierarchy • Explain the pattern of mixing

  11. Thenflavour puzzle II CKM VCKM = PDG 2007 PMNS Gonzalez-Garcia, Maltoni Differences are striking!

  12. The good nSM • Explanation for the neutrino-charged lepton hierarchy • Explain the pattern of mixing • Explain other open problems: DM, matter-antimatter, oscillation anomalies, cosmology anomalies…

  13. Massive Neutrinos & fundamental questions in Particle Physics and Cosmology Structure of the vacuum ? DE ? DM ? Baryons ? Flavour Puzzle: twice as many pieces ? Growth of structure

  14. Outlier I: LSND anomaly LSND vs KARMEN Appearance signal with very different - Not yet disproved at an acceptable level of confidence…

  15. Pinning down the New physics scale Hierarchy problem or SUSY ? eV keV MeV GeV TeV meV Leptogenesis SUSY GUTs

  16. Pinning down the New physics scale bb0n LFV processes, Precision tests, LHC Neutrino osc. Hierarchy problem or SUSY ? eV keV MeV GeV TeV meV CMB, LSS Baryogenesis Leptogenesis SUSY GUTs Nucleosynthesis

  17. The good nSM • Explanation for the neutrino-charged lepton hierarchy • Explain the pattern of mixing • Explain other open problems: DM, matter-antimatter, oscillation anomalies, cosmology anomalies… • Do so, in a predictable and testable way !

  18. No signal of SUSY/solution-of-hierarchy-problem at the LHC (yet)…

  19. Occam’s razor

  20. Pinning down the New physics scale 2) LHC reach 3) LSND reach 1) Decoupling physics Warm DM ? Hierarchy ? eV keV MeV GeV TeV meV LSND, reactor anomalies? Extra radiation ? Matter/antimatter asymmetry ? GUT ? Ruchayskiy’s talk

  21. Effective Theories of Neutrino Masses(model-independent) IfL >> vlow-energyeffectsshould be welldescribed by aneffectivefieldtheory: Weinberg; Buchmuller, Wyler;… Oidbuiltfrom SM fieldssatisfyingthegaugesymmetries Onlyonewithd=5: Weinberg’soperatoror neutrino masses ! Genericallyd=6 operators: richphenomenology

  22. d=6 phenomenology Long listofflavoured-operators • rareleptondecays: m -> e g • Z, W decays • rhoparameter • W mass, … • violationsofuniversality, unitarity,… But…

  23. la -> lbg MEG Ifjust neutrino masses: Ifalsod=6 operators@oneloop

  24. Could d=6 be stronger ? Yesiftwoindependentscales in d=5, d=6 from a symmetryprinciple: leptonnumber Cirigliano et al 05, Kersten,Smirnov 07 ; Abada et al 07 • Ld=5~LLN>> Ld=6 ~ LLFV~ TeV • Originoflepton/quarkflavourviolationlinkedtotheLEW • Lepton number breaking scale higher and responsible • for the gap between n and remaining fermions

  25. Are d=6 flavour structures related to neutrino masses ? Minimal Flavour Violation Chivukula, Georgi; Buras et al.;D’Ambrosio et al; Cirigliano et al; Davidson et al, Gavela, et al (cd=5)ab~(cd=6)ab~mn All flavour violating effects determined by neutrino masses and mixings Unfortunately not the case for most popular models of neutrino mass (ex. Type I seesaw)

  26. BSM and Neutrino Masses(Up->Down approach) ?

  27. New physics scale Type I see-saw: interchange a heavysingletfermion Minkowski; Gell-Mann, RamondSlansky; Yanagida, Glashow…

  28. New physics scale Type II see-saw: interchange a heavy triplet scalar Konetschny, Kummer; Cheng, Li; Lazarides, Shafi, Wetterich…

  29. New physics scale Type III see-saw: interchange a heavy triplet fermion Foot et al; Ma; Bajc, Senjanovic…

  30. New physics scale Alsofromloops ! Zee-Babu Systematicexplorationof 1-loopgenerated Weinberg interaction Bonnet et al 2012

  31. Effectivesee-sawtheories Alsod=6operators Type I Non-unitarity in mixing ! Type III Type II Gavela, Broncano, Jenkins; Abada, et al

  32. Type I Seesaw Most general (renormalizable) Lagrangian compatible with SM gauge symmetries: Y: 3 xnRMN: nRxnR mn ms

  33. Onescalesee-sawmodels Ye

  34. Type I or III + (approx) Lepton number Wyler, Wolfenstein; Mohapatra, Valle; Branco, Grimus, Lavoura, Malinsky, Romao,… nR Inverse Seesaw Direct Seesaw L= +1 -1 +1 mn mn v MN/m M2N/m Y unsuppressed: -> LFV effects at LHC, large m-> eg, etc -> heavier spectrum MN,Yv Kersten,Smirnov 07; Abada et al 07; Gavela,et al 09

  35. MinimalFlavour type I seesaw model Gavela, Hambye, Hernandez, PH 09 Only two extra Weyl fermions + SM Y, Y’ complex vectors, L, m, m’ numbers

  36. Minimal type I seesaw model Neutrino masses & mixings determine Y up to a global normalization (and Majorana phase) Normal hierarchy Inverted hierarchy AlsoRaidal, Strumia, Turzynski 2004; Ibarra et al 2010

  37. Complementarityof CLFV and neutrino oscillations NH IH Gavela, Hambye, Hernandez, PH 09

  38. CLFV within reach Dinh, Ibarra, Molinaro, Petcov 2012

  39. LLFV ~ TeV: directsearches at LHC ? Keung, Senjanovic;… • Generically it is needed • Gauge interactions of extra fields for large enough production • (ex. type II and type III) • Low enough masses for kinematical constraints Type II: Han et al;Garayoa, Schwetz; Kadastik,et al ; Akeroyd, et al; Fileviez et al, del Aguila et al Type III: Franceschini et al; Arhrib et al; Eboli et al…

  40. MinimalFlavourSee-sawIII at LHC Eboli, Gonzalez-Fraile, Gonzalez-Garcia 2011

  41. CMS-PAS-HIG-12-005 Type II seesaw

  42. LSND anomaly In order to accommodate a new • Need at least four (ns ≥1) distinct eigenstates • Apparently CP violating effect needed (signal LSND/MB anti-n not MB n) • ns ≥ 2 • Tension appearance (signal) and disappearance (no signal) ? • Tension with cosmology ?

  43. Outlier II: reactor anomaly old fluxes underestimated by 3%: Re-calculation of reactor fluxes: Mueller et al, ArXiv: 1101.2663

  44. Outlier III: Cosmology Hamann et al, ArXiv: 1006.5276 Sterile species favoured by LSS and CMB Nucleosynthesis: Izotov, Thuan

  45. 3+2 neutrino mixing model Parametrized in terms of a general unitary 5x5 mixing matrix (9 angles, >6 phases physical) Kopp, Maltoni, Schwetz (KMS) arXiv:1103.4570 Giunti, Laveder, (GL) arXiv:1107.1452 Significant improvement over 3n scenario, but tension appearance/disappearance remains

  46. Pheno 3+ns mixing models ? Assumes a general mass matrix for 3+ns neutrinos: what is that model ? 3xns 3x3

  47. Pheno 3+ns mixing models ? Assumes a general mass matrix for 3+ns neutrinos: Gauge invariance Effective theory: MLLparametrizes our ignorance about the underlying dynamics (eg. a model with nR > ns, where the heavier states are integrated out)

  48. Type I see-sawmodels Light sterile states! De Gouvea, hep-ph/0501039 De Gouvea, J. Jenkins, Vasudevan hep-ph/0608147

  49. Minimal models Most general (renormalizable) Lagrangian compatible with SM gauge symmetries: 3+2 minimal much more predictive than 3+2 pheno Donini, PH, Lopez-Pavon, Maltoni 2011; De Gouvea et al 2011;

  50. Heavy-Light Mixings Heavy-light mixings are predicted up to a complex angle z45 and two CP phases ! Normal Hierarchy and Suppressed in Suppressed only in Inverse Hierarchy

More Related