1 / 16

tan  =

Clase 46. a. tan  =. b. a. . b. Repaso sobre trigonometría. Trigonometría , rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa “medida de triángulos”.

Download Presentation

tan  =

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 46 a tan  = b a  b Repaso sobre trigonometría

  2. Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa “medida de triángulos”. Las dos ramas fundamentales de la trigonometría son la trigonometría plana y la trigonometría esférica.

  3. De la Historia

  4. La historia de la trigonometría se remonta a las primeras matemáticas conocidas, en Egipto y Babilonia. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, hasta los tiempos de la Grecia clásica no empezó a haber trigonometría en las matemáticas.

  5. En el siglo II a.C. el astrónomo Hiparco de Nicea compiló una tabla trigonométrica para resolver triángulos. Los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en la función seno en vez de cuerdas como los griegos.

  6. Esta función seno, al contrario que el seno utilizado en la actualidad, no era una proporción, sino la longitud del lado opuesto a un ángulo en un triángulo rectángulo de hipotenusa dada. Los matemáticos indios utilizaron diversos valores para ésta en sus tablas.

  7. A finales del siglo VIII los astrónomos árabes habían recibido la herencia de las tradiciones de Grecia y de la India, y prefirieron trabajar con la función seno.

  8. En las últimas décadas del siglo X ya habían completado la función seno y las otras cinco funciones y habían descubierto y demostrado varios teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos.

  9. El occidente latino se familiarizó con la trigonometría árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano.

  10. B b b a sen  = cos  = cot  = c a c c a  a A b C tan  = b Razones trigonométricas Sea  ABC: rectángulo en C  1  1

  11. Razón trig. 300 450 600 1 1  3  3 sen x 2 2 2 2  3  3  2  2 cos x 2 2  3  3 tan x 1 3 3 cot x 1 Valores notables

  12. Conclusión: Si dos ángulos son complemen- tarios entonces se cumple: sen (900 –  ) = cos  cos (900 –  ) = sen  tan (900 –  ) = cot  cot (900 –  ) = tan 

  13. B c a  a a b C A sen  = c c 1 1 2 2 a = c Ejercicio 1 Si un triángulo rectángulo tiene un ángulo agudo de 300 el cateto opuesto a ese ángulo es la mitad de la hipotenusa. Si en un ABC rectángulo en C, el ángulo  = 300. ¿Qué relación existe entre los catetos y la hipotenusa? sen 300 = =

  14. si sen  = 4 5 Ejercicio 2 Sean  y  las amplitudes de los ángulos agudos de un triángulo rectángulo ABC. Calcula: cos  , tan  y sen 

  15. B si sen  = A C 4 5 a) cos, tan y sen  Por el Teorema de Pitágoras tenemos: c = 5  a = 4 c2= a2 + b2  b2= c2 – a2 b = ? b = 3 b2= 52 – 42 b 3 b2= 25 – 16 cos  = c b 3 5 sen  = b2= 9 c 5 a 4 tan  = b = 3 3 b

  16. 8 17 15 15 15 Resp: ; ; si cos  = 8 17 17 Para el estudio individual Sean  y  las amplitudes de los ángulos agudos de un triángulo rectángulo ABC. Calcula: sen  , tan  y cos 

More Related