1 / 24

Analysis of Parameter Importance in Speaker Identity

Study analyzing relevant parameters for speaker identity through voice conversion and synthesis, applied to voice quality tasks with conclusions on parameter importance.

Download Presentation

Analysis of Parameter Importance in Speaker Identity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analysis of Parameter Importance in Speaker Identity Ricardo de Córdoba, Juana M. Gutiérrez-Arriola Speech Technology Group Departamento de Ingeniería ElectrónicaUniversidad Politécnica de Madride-mail: cordoba@die.upm.es,jmga@ics.upm.es

  2. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  3. source Analysis parameters speaker voice Transformation functionscomputation transformation functions — target Analysis parameters speaker voice — Voice target speaker converted Synthesis parameters speech conversion Introduction

  4. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  5. System description

  6. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  7. Parameter Extraction I • Glottal parameters:

  8. Parameter extraction II

  9. Parameter Extraction III

  10. Parameter Extraction IV • We calculate F0, AV, AF, formant frequencies and bandwidths • Pitch marks and formants are manually revised • Only voiced sounds are transformed

  11. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  12. Voice conversion I • Lineal transformation functions: • For each pair of source-target units we compute the transformation coefficients which are stored in a file

  13. Synthesis • Formant synthesizer (Klatt) • Parameterized units concatenation • Prosodic modification, changing glottal pulse length and the number of glottal pulses • Formant smoothing during unit transitions

  14. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  15. Parameter Analysis I • 11 speakers (5 female, 6 male) • EUROM1 database in Castilian Spanish • Sentence: “Mi abuelo me animó a estudiar solfeo”(My grandfather encouraged me to study solfa) • Fs=16kHz

  16. Parameter Analysis II

  17. Parameter Analysis III • We want to know which parameters are actually relevant for speaker identity • Discriminant functions are linear combinations of variables that best discriminate classes • They can be used to rank the variables in terms of their relative contribution to class discrimination • LDA is performed: • For each phoneme of the sentence (does not work well for the whole sentence) • Coefficients of the first discriminant function are used to rank the parameters

  18. Application to a Voice Quality Task • We extracted four sentences of the Brian VOQUAL'03 database: normal, clear, creaky, and relax. • We analyzed two phonemes of the sentence: “She has left for a great party today” • We wanted to rank parameter importance to discriminate between the four classes: • We use the coefficients of the first discriminant function

  19. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  20. Results IVoice Quality Task E A Frame classification for E and A using LDA for the first two discriminant functions normalcreakyclearrelax

  21. Results IIVoice Quality Task Absolute values of the coefficients that multiply each parameter in the first discriminant functions E A First function coefficients

  22. Results IIISpeaker Identity Number of times each parameter has been the most relevant (up) and the least relevant (bottom) in the first discriminant function

  23. Index • Introduction • System description • Parameter extraction • Voice conversion and synthesis • Parameter analysis • Application to a voice quality task • Results • Conclusions

  24. Conclusions • Parameter importance depends on: • the type of speech • the gender of the speaker • the phonemes under study • Results show that F0, formant frequencies and OQ are the most important parameters for speaker classification.

More Related