1 / 29

EE2420 – Digital Logic Summer II 2013

EE2420 – Digital Logic Summer II 2013. Set 12: Multiplexers, Decoders, Encoders, Shift Register Class book: Chapter 6 Online book: chapter 8. Hassan Salamy Ingram School of Engineering Texas State University. Multiplexer.

cuyler
Download Presentation

EE2420 – Digital Logic Summer II 2013

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE2420 – Digital LogicSummer II 2013 Set 12: Multiplexers, Decoders, Encoders, Shift Register Class book: Chapter 6 Online book: chapter 8 Hassan Salamy Ingram School of Engineering Texas State University

  2. Multiplexer • In its standard form, a multiplexer takes an N-bit control input to determine which of 2N data inputs will be passed to its single output. • In other words, a multiplexer selects one of multiple inputs • Functions may be implemented by using a combination of the control inputs and data inputs.

  3. A 2-to-1 multiplexer s f s w w 0 0 0 0 f w 1 w 1 1 1 (b) Truth table (a) Graphical symbol w 0 s f w 1 (c) Sum-of-products circuit

  4. A 4-to-1 multiplexer. s 0 s s s f 1 1 0 w w 00 0 0 0 0 w 01 w 1 0 1 f 1 w 10 w 2 1 0 2 w 11 3 w 1 1 3 (a) Graphic symbol (b) Truth table s 0 w 0 s 1 w 1 (c) Circuit f w 2 w 3

  5. Using 2-to-1 multiplexers to build a 4-to-1 multiplexer s 1 s 0 w 0 0 w 1 1 0 f 1 w 0 2 w 1 3

  6. A 16-to-1 multiplexer. s 0 s 1 w 0 w 3 s w 2 4 s 3 w 7 f w 8 w 11 w 12 w 15

  7. A practical application of multiplexers s x y 1 1 x y 2 2 (a) A 2x2 crossbar switch x 0 1 y 1 1 s x 0 2 y 2 1 (b) Implementation using multiplexers

  8. Synthesis of a logic function using multiplexers w w w f 2 1 2 w 1 0 0 0 0 1 f 0 1 1 1 1 0 1 0 0 1 1 (a) Implementation using a 4-to-1 multiplexer w w f 1 2 f w 1 w 1 0 0 0 w 0 2 1 0 1 w w 1 2 2 1 1 0 f 0 1 1 (c) Circuit (b) Modified truth table

  9. Implementation of the three-input majority function using a 4-to-1 multiplexer. w w w f 1 2 3 w w f 1 2 0 0 0 0 0 0 0 0 0 1 0 w 0 1 3 0 1 0 0 w 1 0 3 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 (a) Modified truth table w 2 w 1 0 w (b) Circuit 3 f 1

  10. Three-input XOR implemented wit 2-to-1 multiplexers w w w f 1 2 3 0 0 0 0 0 0 1 1 w Å w w 2 2 3 w 0 1 0 1 1 w 0 1 1 0 3 1 0 0 1 f 1 0 1 0 Å w w 2 3 1 1 0 0 1 1 1 1 (a) Truth table (b) Circuit

  11. Three-input XOR function implemented with a 4-to-1 multiplexer w w w f 1 2 3 0 0 0 0 w 3 w 0 0 1 1 2 w 1 0 1 0 1 w 3 w 0 1 1 0 3 1 0 0 1 f w 3 1 0 1 0 1 1 0 0 w 3 1 1 1 1 (b) Circuit (a) Truth table

  12. The three-input majority function implemented using a 2-to-1 multiplexer. w w w f 1 2 3 f 0 0 0 0 w 1 0 0 1 0 w w 0 2 3 0 1 0 0 w + w 1 2 3 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 (b) Truth table w 1 w 2 w 3 f (b) Circuit

  13. What is a Demultiplexer (DEMUX)? Demultiplexer Block Diagram 1 2N Input (source) Outputs (destinations) N Select Lines DEMUX • A DEMUX is a digital switch with a single input (source) and a multiple outputs (destinations). • The select lines determine which output the input is connected to. • DEMUX Types  1-to-2 (1 select line)  1-to-4 (2 select lines)  1-to-8 (3 select lines)  1-to-16 (4 select lines)

  14. Typical Application of a DEMUX Multiple Destinations Single Source Selector B/W Laser Printer Fax Machine Color Inkjet Printer D0 D1 D2 D3 Pen Plotter X DEMUX

  15. Decoder • In its standard form, a decoder takes an N-bit input and outputs 2N functions, each of which is active for exactly one input combination. • In other words, a decoder outputs the minterms of the inputs (or with inverted outputs, the maxterms) • Functions may be implemented with the addition of a single extra gate. For example, an OR gate may be used to combine minterms for a sum-of-products implementation or an AND gate may be used to combine maxterms for a product-of-sums implementation.

  16. An n-to-2n binary decoder. w y 0 0 n n 2 inputs w outputs n – 1 y n Enable 2 – 1 En

  17. w w y y y y En 1 0 0 1 2 3 w y 0 0 0 0 0 1 0 0 1 w y 1 1 0 1 0 1 0 0 1 y 2 1 1 0 0 0 1 0 y En 3 1 1 1 0 0 0 1 x x 0 0 0 0 0 (a) Truth table (b) Graphical symbol w 0 y 0 w 1 y 1 y 2 y 3 En (c) Logic circuit A 2-to-4 decoder.

  18. A 3-to-8 decoder using two 2-to-4 decoders. w y w y 0 0 0 0 w y w y 1 1 1 1 y y 2 2 w y 2 y En 3 3 y w y En 4 0 0 y w y 5 1 1 y y 6 2 y y En 7 3

  19. w y w y 0 0 0 0 w y w y 1 1 1 1 y y 2 2 y y En 3 3 y w y 4 0 0 w y y 5 1 1 y y 2 6 w w y y y 2 En 0 0 3 7 w w y 3 1 1 y 2 y w y y En En 8 0 0 3 y w y 9 1 1 y y 2 10 y y En 3 11 y w y 12 0 0 y w y 13 1 1 y y 2 14 y y En 3 15 A 4-to-16 decoder built using a decoder tree.

  20. A 4-to-1 multiplexer built using a decoder. w 0 w 1 s w y 0 0 0 s w y f 1 1 1 y w 2 2 y En 1 3 w 3

  21. Decoders: Designing Logic Circuits F = Sm(0,2)

  22. A 2m x n read-only memory (ROM) block. Sel 0 0/1 0/1 0/1 Sel 1 0/1 0/1 0/1 Sel a 2 0 0/1 0/1 0/1 decoder a 1 Address m -to-2 a m – 1 m Sel m 2 – 1 0/1 0/1 0/1 Read d d d Data n – 1 n – 2 0

  23. A 2n-to-n binary encoder. w 0 y 0 n n 2 outputs inputs y n – 1 w n 2 – 1

  24. A 4-to-2 binary encoder. w w w w y y 3 2 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 (a) Truth table w 0 w 1 y 0 w 2 y 1 w 3

  25. 4-bit Data Shifter • Data Shifter • A combinational logic shifter is a device that produces an output obtained by shifting its input • Right Shift: The Most Significant bit is called the fill bit and the Least Significant bit is called the spill bit • Left Shift: MSB is the spill bit – LSB is the fill bit • Processes: • Logical Shift => a logic zero is inserted in the fill position • Arithmetic => the sign bit is extended in a right shift • End-around [or rotate]

  26. 4-bit Logical ShifterProblem Statement • Step 1: Clear Problem Statement • Design and implement a 4-bit logical shifter that has 4-bit input “A”, 4-bit output “S”, and 1-bit controls X and Y where:

  27. 4-bit Logical ShifterConceptualization • Step 2: Conceptualization • This 4-bit shifter can be represented by the black-box model below with the associated Output Table

  28. 4-bit Logical Shifter Solution/Simplification • Step 3: Solution/Simplification • The output table, with it’s different terms and exact duplication of bit values - - Should suggest a multiplexer • The logic functions describing the assignment of the values is:

  29. 4-bit Logical Shifter Realization and Verification • Step 4: Realization • Those 4 output values can be implemented using four 4-to-1 mux’s as follows: • Step 5: Verification • Lab time! - - Does it really do what you designed it to do? • Return to that K-map/Truth table and be sure!

More Related