290 likes | 493 Views
EE2420 – Digital Logic Summer II 2013. Set 12: Multiplexers, Decoders, Encoders, Shift Register Class book: Chapter 6 Online book: chapter 8. Hassan Salamy Ingram School of Engineering Texas State University. Multiplexer.
E N D
EE2420 – Digital LogicSummer II 2013 Set 12: Multiplexers, Decoders, Encoders, Shift Register Class book: Chapter 6 Online book: chapter 8 Hassan Salamy Ingram School of Engineering Texas State University
Multiplexer • In its standard form, a multiplexer takes an N-bit control input to determine which of 2N data inputs will be passed to its single output. • In other words, a multiplexer selects one of multiple inputs • Functions may be implemented by using a combination of the control inputs and data inputs.
A 2-to-1 multiplexer s f s w w 0 0 0 0 f w 1 w 1 1 1 (b) Truth table (a) Graphical symbol w 0 s f w 1 (c) Sum-of-products circuit
A 4-to-1 multiplexer. s 0 s s s f 1 1 0 w w 00 0 0 0 0 w 01 w 1 0 1 f 1 w 10 w 2 1 0 2 w 11 3 w 1 1 3 (a) Graphic symbol (b) Truth table s 0 w 0 s 1 w 1 (c) Circuit f w 2 w 3
Using 2-to-1 multiplexers to build a 4-to-1 multiplexer s 1 s 0 w 0 0 w 1 1 0 f 1 w 0 2 w 1 3
A 16-to-1 multiplexer. s 0 s 1 w 0 w 3 s w 2 4 s 3 w 7 f w 8 w 11 w 12 w 15
A practical application of multiplexers s x y 1 1 x y 2 2 (a) A 2x2 crossbar switch x 0 1 y 1 1 s x 0 2 y 2 1 (b) Implementation using multiplexers
Synthesis of a logic function using multiplexers w w w f 2 1 2 w 1 0 0 0 0 1 f 0 1 1 1 1 0 1 0 0 1 1 (a) Implementation using a 4-to-1 multiplexer w w f 1 2 f w 1 w 1 0 0 0 w 0 2 1 0 1 w w 1 2 2 1 1 0 f 0 1 1 (c) Circuit (b) Modified truth table
Implementation of the three-input majority function using a 4-to-1 multiplexer. w w w f 1 2 3 w w f 1 2 0 0 0 0 0 0 0 0 0 1 0 w 0 1 3 0 1 0 0 w 1 0 3 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 (a) Modified truth table w 2 w 1 0 w (b) Circuit 3 f 1
Three-input XOR implemented wit 2-to-1 multiplexers w w w f 1 2 3 0 0 0 0 0 0 1 1 w Å w w 2 2 3 w 0 1 0 1 1 w 0 1 1 0 3 1 0 0 1 f 1 0 1 0 Å w w 2 3 1 1 0 0 1 1 1 1 (a) Truth table (b) Circuit
Three-input XOR function implemented with a 4-to-1 multiplexer w w w f 1 2 3 0 0 0 0 w 3 w 0 0 1 1 2 w 1 0 1 0 1 w 3 w 0 1 1 0 3 1 0 0 1 f w 3 1 0 1 0 1 1 0 0 w 3 1 1 1 1 (b) Circuit (a) Truth table
The three-input majority function implemented using a 2-to-1 multiplexer. w w w f 1 2 3 f 0 0 0 0 w 1 0 0 1 0 w w 0 2 3 0 1 0 0 w + w 1 2 3 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 (b) Truth table w 1 w 2 w 3 f (b) Circuit
What is a Demultiplexer (DEMUX)? Demultiplexer Block Diagram 1 2N Input (source) Outputs (destinations) N Select Lines DEMUX • A DEMUX is a digital switch with a single input (source) and a multiple outputs (destinations). • The select lines determine which output the input is connected to. • DEMUX Types 1-to-2 (1 select line) 1-to-4 (2 select lines) 1-to-8 (3 select lines) 1-to-16 (4 select lines)
Typical Application of a DEMUX Multiple Destinations Single Source Selector B/W Laser Printer Fax Machine Color Inkjet Printer D0 D1 D2 D3 Pen Plotter X DEMUX
Decoder • In its standard form, a decoder takes an N-bit input and outputs 2N functions, each of which is active for exactly one input combination. • In other words, a decoder outputs the minterms of the inputs (or with inverted outputs, the maxterms) • Functions may be implemented with the addition of a single extra gate. For example, an OR gate may be used to combine minterms for a sum-of-products implementation or an AND gate may be used to combine maxterms for a product-of-sums implementation.
An n-to-2n binary decoder. w y 0 0 n n 2 inputs w outputs n – 1 y n Enable 2 – 1 En
w w y y y y En 1 0 0 1 2 3 w y 0 0 0 0 0 1 0 0 1 w y 1 1 0 1 0 1 0 0 1 y 2 1 1 0 0 0 1 0 y En 3 1 1 1 0 0 0 1 x x 0 0 0 0 0 (a) Truth table (b) Graphical symbol w 0 y 0 w 1 y 1 y 2 y 3 En (c) Logic circuit A 2-to-4 decoder.
A 3-to-8 decoder using two 2-to-4 decoders. w y w y 0 0 0 0 w y w y 1 1 1 1 y y 2 2 w y 2 y En 3 3 y w y En 4 0 0 y w y 5 1 1 y y 6 2 y y En 7 3
w y w y 0 0 0 0 w y w y 1 1 1 1 y y 2 2 y y En 3 3 y w y 4 0 0 w y y 5 1 1 y y 2 6 w w y y y 2 En 0 0 3 7 w w y 3 1 1 y 2 y w y y En En 8 0 0 3 y w y 9 1 1 y y 2 10 y y En 3 11 y w y 12 0 0 y w y 13 1 1 y y 2 14 y y En 3 15 A 4-to-16 decoder built using a decoder tree.
A 4-to-1 multiplexer built using a decoder. w 0 w 1 s w y 0 0 0 s w y f 1 1 1 y w 2 2 y En 1 3 w 3
Decoders: Designing Logic Circuits F = Sm(0,2)
A 2m x n read-only memory (ROM) block. Sel 0 0/1 0/1 0/1 Sel 1 0/1 0/1 0/1 Sel a 2 0 0/1 0/1 0/1 decoder a 1 Address m -to-2 a m – 1 m Sel m 2 – 1 0/1 0/1 0/1 Read d d d Data n – 1 n – 2 0
A 2n-to-n binary encoder. w 0 y 0 n n 2 outputs inputs y n – 1 w n 2 – 1
A 4-to-2 binary encoder. w w w w y y 3 2 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 (a) Truth table w 0 w 1 y 0 w 2 y 1 w 3
4-bit Data Shifter • Data Shifter • A combinational logic shifter is a device that produces an output obtained by shifting its input • Right Shift: The Most Significant bit is called the fill bit and the Least Significant bit is called the spill bit • Left Shift: MSB is the spill bit – LSB is the fill bit • Processes: • Logical Shift => a logic zero is inserted in the fill position • Arithmetic => the sign bit is extended in a right shift • End-around [or rotate]
4-bit Logical ShifterProblem Statement • Step 1: Clear Problem Statement • Design and implement a 4-bit logical shifter that has 4-bit input “A”, 4-bit output “S”, and 1-bit controls X and Y where:
4-bit Logical ShifterConceptualization • Step 2: Conceptualization • This 4-bit shifter can be represented by the black-box model below with the associated Output Table
4-bit Logical Shifter Solution/Simplification • Step 3: Solution/Simplification • The output table, with it’s different terms and exact duplication of bit values - - Should suggest a multiplexer • The logic functions describing the assignment of the values is:
4-bit Logical Shifter Realization and Verification • Step 4: Realization • Those 4 output values can be implemented using four 4-to-1 mux’s as follows: • Step 5: Verification • Lab time! - - Does it really do what you designed it to do? • Return to that K-map/Truth table and be sure!