1 / 5

Standard

Standard. Type. Year of Introduction. Multiple Access. Frequency Band. Modulation. Channel Bandwidth. ETACS. Cellular. 1985. FDMA. 900 MHz. FM. 25 kHz. NMT-450. Cellular. 1981. FDMA. 450-470 MHz. FM. 25 kHz. NMT-900. Cellular. 1986. FDMA. 890-960 MHz.

cuyler
Download Presentation

Standard

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Standard Type Year of Introduction Multiple Access Frequency Band Modulation Channel Bandwidth ETACS Cellular 1985 FDMA 900 MHz FM 25 kHz NMT-450 Cellular 1981 FDMA 450-470 MHz FM 25 kHz NMT-900 Cellular 1986 FDMA 890-960 MHz FM 12.5kHz GSM Cellular/ PCS 1990 TDMA 890-960 MHz GMSK 200 kHz C-450 Cellular 1985 FDMA 450-465 MHz FM 20 kHz/ 10 kHz ERMES Paging 1993 FDMA Several 4-FSK 25 kHz CT2 Cordless 1989 FDMA 864-868 MHz GFSK 100 kHz DECT Cordless 1993 TDMA 1880-1900 MHz GFSK 1.728 MHz DCS-1800 Cordless/ PCS 1993 TDMA 1710-1880 MHz GMSK 200 kHz Major Mobile Radio Standards in Europe

  2. Standard Type Year Of Introduction Multiple Access Frequency Band Modulation Channel Bandwidth AMPS Cellular 1983 FDMA 824-894 MHz FM 30 kHz NAMPS Cellular 1992 FDMA 824-894 MHz FM 10 kHz USDC Cellular 1991 TDMA 824-894 MHz p/4- DQPSK 30 kHz CDPD Cellular 1993 FH/ Packet 824-894 MHz GMSK 30 kHz IS-95 Cellular 1993 CDMA 824-894 MHz 1.8-2.0 GHz QPSK/ BPSK 1.25 MHz GSC paging 1970 Simplex Several FSK 12.5 kHZ POCSAG Paging 1970 Simplex Several FSK 12.5 kHZ FLEX Paging 1993 Simplex Several 4-FSK 15 kHz DSC-1900 (GSM) PCS 1994 TDMA 1.85-1.99 GHz p /4- DQPSK 200 kHz PACS Cordless 1994 TDMA/ FDMA 1.85-1.99 GHz p /4- DQPSK 300 kHz MIRS SMR/ PCS 1994 TDMA Several 16-QAM 25 kHz iDEN SMR/ PCS 1995 TDMA Several 16-QAM 25 kHz Major Mobile Radio Standards in North America

  3. Standard Year Of Introduction Multiple Access Frequency Band Modulation Channel Bandwidth JTACS Cellular 1988 FDMA 860-925 MHz FM 25 kHz PDC Cellular 1993 TDMA 810-1501 MHz P/4- DQPSK 25 kHz NTT Cellular 1979 FDMA 400/800 MHz FM 25kHz NTACS Cellular 1993 FDMA 843-925 MHz FM 12.5 kHz NTT Paging 1979 FDMA 280 MHz FSK 12.5 kHz NEC Paging 1979 FDMA Several FSK 10 kHz PHS Cordless 1993 TDMA 1895-1907 MHz P/4- DQPSK 300 kHz Major Mobile Radio Standards in Japan Type

  4. Function Time Waveform w(t) Spectrum W(f) Fourier Transform pairs Rectangular rect(t/T) Triangular ( t /T) Unit Step {+1, t> 0 u(t) = {-1, t< 0 1/2d(f)+1/(j2pf) Signum {+1, t> 0 sgn(t) = {-1, t <0 1/(jpf) Constant 1 d(f) Impulse at t=t0 d(t-t0) e-2 j f t0 Sinc Sa(2pWt) 1/2W rect(f/2W) Phasor ej(w0 t+f) ejf (f-f0 ) Sinusoid cos(wct+f) 1/2e jfd(f-f c)+1/2e -jfd(f+f c ) Gaussian e- p (t/ t0 )^2 t0 e- p (f t0)^2 Exponential, One sided { e-t/T ,t>=0 { 0 ,t< 0 T/(1+j2pfT) Exponential, Two sided e-|t|/T 2T/(1+(2pfT)^2) Impulse Train k= d(t-kT) k=- n= f (f-nf ), where f = 1/T n=- T[Sa(pfT)] T[Sa(pfT)]2

  5. Operation Function Fourier Transform Linearity A1w1(t)+A2w2(t) A1W1(f)+A2W2(f) Time Delay w(t-T d) W(f) e-jwTd Scale Change w(at) 1/|a| W(f/a) Conjugation w * (t) W * (-f) Duality W(t) w(-f) Real Signal Frequency Translation [w(t) is real] w(t)cos(wc t +q ) 1/2 [e jqW(f-f c )+e–jqW(f+f c )] Complex Signal Frequency Translation w(t)ejwct W(f-f c ) Band pass Signal Re{g(t)ejwct } 1/2[G(f-fc )+G *(-f-fc )] Differentiation d nw(t)/dt n (j2 pf) nW(f) Integration t-w( l)dl (j2pf)-1 W(f)+1/2W(0) d (f) Convolution w1 (t)*w2 (t) =-w ( l ).w (t- l )d l W1 (f)W 2 (f) Multiplication w1 (t)w2 (t) W1 (f)* W2 (f) = W1 (l ).W2 (f-l)dl Multiplication by t n tn w(t) (-j2p )-1d nW(f)/dnf Fourier Transform Theorems

More Related