1.02k likes | 1.33k Views
第 7 章. 無線網路. 本章提要. 無線傳輸技術介紹 IEEE 802.11 802.11b ─ 最普及的無線區域網路規格 802.11a 與 802.11g ─ 雙雄爭霸 藍芽技術 (Bluetooth) GSM & GPRS WAP. 無線傳輸技術介紹. 所謂無線網路就是以肉眼看不到的電磁波為傳輸媒介 , 來建立實體的網路連線。 若再依電磁波的屬性進一步細分 , 則可分為兩大類: 光波傳輸 和 無線電波傳輸 。
E N D
第 7 章 無線網路
本章提要 • 無線傳輸技術介紹 • IEEE 802.11 • 802.11b ─ 最普及的無線區域網路規格 • 802.11a 與 802.11g ─ 雙雄爭霸 • 藍芽技術 (Bluetooth) • GSM & GPRS • WAP
無線傳輸技術介紹 • 所謂無線網路就是以肉眼看不到的電磁波為傳輸媒介, 來建立實體的網路連線。 • 若再依電磁波的屬性進一步細分, 則可分為兩大類:光波傳輸和無線電波傳輸。 • 以光為傳輸媒介的技術常見的有紅外線 (Infrared, IR) 和雷射 (Laser);而使用無線電波的技術則包括窄頻微波 (Narrowband icrowave)、802.11 無線區域網路、HomeRF 以及藍芽 (Bluetooth) 等技術。
以光為傳輸媒介 • 不管是紅外線或雷射, 因為是利用光做為傳輸媒介, 所以都必須受限於光的特性。在無線網路的應用上, 光最令人注意的特性有兩點: 1. 光無法穿透大多數的障礙物, 就算穿透了也會出現折射和散射的情況。 2. 光的行進路徑必須為直線, 不過這點可以透過折射及散射的方式解決。了解光的特性後, 接著我們來介紹紅外線與雷射這兩種用光波傳輸的技術。
紅外線 • 紅外線傳輸標準是在 1993 年由 IrDA 協會 (Infrared Data Association) 所制定, 其目的是為了建立互通性佳、低成本、低耗能的資料傳輸解決方案, 目前幾乎所有筆記型電腦都配備有紅外線通訊埠。
紅外線傳輸的 3 種模式 • 直接式紅外線連接 (Direct-Beam IR, DB/IR) • 散射式紅外線連接 (Diffuse IR, DF/IR) • 全向性紅外線連接 (Omnidirectional IR, Omni/IR)
直接式紅外線連接 • 將兩個要建立連線的紅外線通訊埠面對面, 之間不能有阻隔物, 即可建立連線。 • 這種方式不需要擔心傳送資料中途被人截取, 但適用範圍也非常小。
散射式紅外線連接 • 散射式的連接方式不需要讓紅外線通訊埠面對面, 只要是在同一個封閉的空間內, 彼此即能建立連線, 不過很容易受到空間內其他干擾源的影響, 導致資料傳輸失敗, 甚至無法建立連線。
全向性紅外線連接 • 全向性連接則是擷取直接式和散射式二者之長, 利用一個散射式的紅外線基地台(Base Station, BS) 為中繼站, 將各裝置的紅外線通訊埠指向基地台, 彼此便能夠建立連線。
紅外線傳輸的缺點 • 傳輸距離太短 • 紅外線資料傳輸是以點對點的方式進行, 傳輸距離約在 1.5 公尺之內。 • 易受阻隔 • 紅外線的穿透率非常差, 只要有任何障礙物遮蔽到紅外線, 連線就會中斷, 若中斷超過一定時間, 則此次連線就會失敗。
雷射 • 雷射和紅外線同屬光波傳送技術, 不過雷射無線網路的連接模式只有直接式連接一種。 • 這是因為雷射是將光集成一道光束, 再射向目的地, 途中幾乎不會產生散射現象, 在許多需要安全的連線環境中, 雷射絕對是一個極佳的選擇。
以無線電波為傳輸媒介 • 目前大部分的無線網路都是採用無線電波為傳輸媒介, 這是因為無線電波的穿透力強, 而且是全方位傳輸, 不侷限於特定方向, 和光波傳輸相較之下, 無線電波傳輸特別適合用在區域網路。 • 另外還有一種情況也很適合採用無線電波傳輸, 就是當使用者不願意負擔佈線和維護線路的成本, 而其環境又有許多障礙物時, 採用無線電波的無線網路根本就是唯一的解決方案!
以無線電波為傳輸媒介 • 不過, 不管在任何地區, 無線電波頻帶都是一項寶貴的資產, 也都受到特別的管制, 因此無線網路所採用的無線電波頻率大多設定在 2.4 GHz 公用頻帶, 以避免相關的法律問題。 • 不過因為是公用頻帶, 包括工業、科學與醫學的許多設備, 都會將無線電波頻率設在這個頻帶內 (例如:微波爐), 因此大多透過展頻技術配合調變技術發送訊號, 以避免訊號互相干擾。
以無線電波為傳輸媒介 • 目前大部分的無線網路, 都採用源自於軍方的展頻 (Spread Spectrum) 技術來發送訊號, 因為這種技術的保密能力與抗干擾能力都很強, 所以在民間也受到廣泛的應用。 • 以無線電波做為傳輸媒介的技術有窄頻微波、802.11 無線區域網路、Bluetooth 等等。
窄頻微波 • 微波和雷射類似, 一樣可提供點對點的遠距離無線連結, 應用方式也類似, 不過微波是採用高頻率短波長的電波來傳送資料, 所以較容易受到外在因素的干擾。 • 微波頻帶介於 3 ~ 30 GHz 之間, 而為了節省頻寬和避免串音的干擾, 因此微波設備通常都不使用公用頻帶, 而且以非常窄的頻寬來傳輸訊號。
窄頻微波 • 這種窄頻微波的頻寬只剛好能將訊號塞進去而已, 如此不但可以大幅減少頻帶的耗用, 也可以減輕串音干擾的問題。 • 微波很容易受到串音的干擾, 而在公用頻帶內, 有太多的無線電產品會發出電波, 就算是用了窄頻的技術, 無可避免還是會被其他訊號干擾到, 導致傳輸品質不良。
窄頻微波 • 目前的微波系統除了頻帶的問題之外, 另一個大問題是沒有統一的標準。這是個很嚴重的問題, 因為沒有統一的標準, 所以各家廠商所生產的產品無法互通。
IEEE 802.11 • IEEE 802.11 最早由 IEEE 在 1997 年 6 月正式發表, 此文件定義無線網路在實體層(Physical Layer) 與鏈結層 (Data Link Layer) 所使用的標準。
IEEE 802.11 的傳輸技術 • 在實體層規範了 3 種傳輸技術: • 直接序列展頻 (Direct Sequence Spread Spectrum, DSSS) • 跳頻式展頻 (Frequency Hopping Spread Spectrum, FHSS) • 紅外線 (Infrared, IR) • 在鏈結層則規範了 CSMA/CA 這種媒介存取控制方法。
直接序列展頻 • 直接序列展頻是將每個窄頻寬、高能量的位元訊號 (0 與1) 與展頻碼 (Spreading Code) 做運算, 將原本訊號延展為數倍頻寬, 並將訊號能量降低至低於背景雜訊(Background Noise), 再把訊號傳送出去。
直接序列展頻 • 直接序列展頻在傳輸訊號的過程中, 會在 2.4GHz 頻帶中, 選擇一些連續的頻帶, 並將展頻後的資料在這些頻帶上傳送出去:
直接序列展頻 • 802.11 定義的直接序列展頻技術可使用不同調變技術以提供 2 種速率: • 1 Mbps:採用 DBPSK (Differential Binary Phase Shift Keying) 調變技術。 • 2 Mbps:採用 DQPSK (Differential Quadrature Phase Shift Keying) 調變技術。
跳頻式展頻 • 跳頻式展頻會先將要傳送的資料分割成許多區塊, 並將連續的頻帶, 切割為多個小頻帶, 每次依序傳送區塊時, 會隨機選擇要把封包放到哪個頻帶:
為何叫「展頻」 • 是因為雖然將整個頻帶切割成許多的小頻道,不斷在其間跳躍傳送資料, 但是其跳躍速度極快, 而且頻道很密集, 感覺上好像是使用整個頻帶的頻寬, 所以也稱之為『展頻』。
跳頻式展頻 • 這種跳頻式的傳輸方式, 無形中也降低了被竊聽的風險。因為每傳送一段資料後, 下一次要用那一個頻道傳送, 只有接收端才會知道, 外界根本無從得知。 • 跳頻式展頻所使用的調變技術為 GFSK (Gaussian Frequency Shift Key), 基本頻寬是 1 Mbps, 最高為 2 Mbps。
跳頻式展頻 • 跳頻式展頻遠比直接序列展頻有較高的容錯能力。這是因為就算傳送資料的過程中, 被外在因素所干擾, 也只會造成某個小頻道無法傳送資料, 發送端只要針對被干擾的部分重送即可。
802.11 的網路架構 • 802.11 規範 2 種無線網路架構:Infrastructure 與 Ad Hoc。 • Infrastructure 架構的特徵是用到了AP (Access Point, 俗稱基地台或存取點)。 • AP 有 2 個主要的功能: • 將收到的無線訊號再生, 然後轉送出去, 補償訊號功率不足, 延長傳輸的距離。 • 擔任無線網路與有線網路的橋樑, 透過 AP 可以將無線網路與乙太網連接起來。
Ad Hoc 網路架構 • 此架構的特徵為不使用 AP, 每台電腦使用各自的無線網路卡互傳資料, 例如多台筆記型電腦彼此利用 PCMCIA 無線網路卡相連, 就成為一個 Ad Hoc 架構的無線網路。
802.11b -最普及的無線區域網路規格 • 由於 802.11 規格所支援的最高傳輸速率僅有 2 Mbps, 遠低於大眾的期待, 因此市場接受度很低。 • 802.11 工作小組隨後在 1999 年推出加強火力的 802.11b 規格, 終於獲得各廠商的青睞, 也帶動了 WLAN (Wireless LAN, 無線區域網路) 的蓬勃發展。
802.11b 的改進 • 802.11b 的正式名稱為 Higher-Speed Physical Layer Extension in the 2.4GHz Band, 此名稱隱含的意義為 802.11b 只是擴充 802.11 實體層的功能, 至於其它部分仍然沿用 802.11 的規格。 • 大體而言, 802.11b 做了以下較重要的修改: • 引進 CCK 調變技術 • 使用短前置訊號和表頭模式
引進 CCK 調變技術 • 802.11b 實體層使用 DSSS 展頻, 而且採用 CCK (Complementary Code Keying) 調變技術。 • CCK 在調變時並非使用固定的展頻碼, 而是根據所要傳送的訊號, 使用不同的展頻碼, 以表現出較多種的資料組合, 因此能提升資料傳輸速率。
使用短前置訊號和表頭模式 • 802.11 實體層在傳送資料時, 會加上前置訊號 (Preamble) 與表頭 (Header)。 • 前者主要用來使接收端和發送端能同步;後者則用來記錄封包長度、協調速率、偵錯等等。但是, 前置訊號與表頭都只能以 1 Mbps 的速率傳送, 成為拖垮效率的瓶頸。
使用短前置訊號和表頭模式 • 因此 802.11b 改用短前置訊號與表頭模式 (Short Preamble And Header Mode), 將前置訊號的長度從 144 Bits 縮短為 72 Bits, 並將表頭的傳輸速率由 1 Mbps 提升為 2 Mbps。 • 如此一來使得傳送前置訊號和表頭的時間縮減為原本的一半, 相對地提高資料的傳送效率。
使用短前置訊號和表頭模式 • 對使用者而言, 上述措施所導致最明顯的進步, 便是傳輸速率涵蓋 1Mbps、2 Mbps、5.5 Mbps 和 11 Mbps 4 種。最高傳輸速率已經接近了 10 Base 乙太網路的水準, 因此逐漸被大眾所接受。
使用短前置訊號和表頭模式 • 由電腦軟硬體製造廠商、網路設備製造商、消費性電子產品製造商共同組成 WECA (Wireless Ethernet Compatability Alliance) 聯盟, 執行各家產品的相容性認證, 該認證標準稱為 Wi-Fi (Wireless Fidelity)。 • 凡是通過 Wi-Fi 認證的產品, 表示完全遵循 802.11 組織制定的規格, 所以彼此之間一定可以互通, 不會有不相容的問題。