710 likes | 928 Views
General Structural Equation (LISREL) Models . Week 3 # 3 MODELS FOR MEANS AND INTERCEPTS. Refer to slides from previous class (Week 3 #2) if not covered in full on Tuesday. Models with Means and Intercepts. Review of material from last class
E N D
General Structural Equation(LISREL) Models Week 3 # 3 MODELS FOR MEANS AND INTERCEPTS
Refer to slides from previous class (Week 3 #2) if not covered in full on Tuesday.
Models with Means and Intercepts • Review of material from last class • (detail of coverage to depend on progress from Tuesday’s class) • Consider a measurement model: Equations: V1 = 1.0 L1 + E1 V2 = b1L1 + E2 V3 = b2L1 + E3 V4 = b3L1 + E4
Models with Means and Intercepts • The covariance matrix upon which this model is based:
Models with Means and Intercepts • Simple replacements in this matrix: • 1. For any element, covariance replaced by moment: 2. And an “augmented moment matrix” is created by letting the first (or the last) element of the data matrix (the “X” in X’X) be a vector of 1’s
Models for Means and Intercepts • Augmented moment matrix: Each of the above divided by N-1
Means and intercepts in SEM Models Working from this matrix instead of working from S, we can add intercepts back into equations (reproduce M instead of S).
Models for Means and Intercepts • MEASUREMENT EQUATIONS NOW BECOME: • V1 = a1 + 1.0L1 + E1 • V2 = a2 + b1 L1 + E2 • V3 = a3 + b2 L1 + E3 • V4 = a4 + b3 L1 + E4 • And there is a final equation for the mean of the latent variable: • L1 = a5
Means and intercepts in SEM Models Conventional Model: X1 = 1.0 LV1 + e1 X2 = b2 LV1 + e2 X3 = b3 LV1 + e3 Extended to include intercepts: X1 = a1 + 1.0 LV1 + e1 X2 = a2 + b2 LV1 + e2 X3 = a3 + b3 LV1 + e3 [LV1 = a4] EQS calls this “V999”. Other programs do not explicitly model “1” as if it were a variable
Means and intercepts in SEM Models Three new pieces of information: Means of X1, X2, X3 Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b2 L1 + e2 X3 = a3 + b3 L1 + e3 Other parameters: Var(e1) Var(e2) Var(e3) Var(L1) Mean(L1) One of the following parameters needs to be fixed: a1,a2,a3, mean(L1)
Models for Means and Intercepts • From the augmented moment matrix, 4 new pieces of information • 5 new (possible) parameters: • a1 through a5 • cannot identify equation intercepts (under-identified) • but we can identify differences between intercepts.
Means and intercepts in SEM Models Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b2 L1 + e2 X3 = a3 + b3 L1 + e3 Conventions: a1 = 0 Then Mean(L1) = Mean(X1) and a2 is difference between means X1,X2 (not usually of interest) a3 is difference between means X1, X3 (not usually of interest)
Means and intercepts in SEM Models Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b2 L1 + e2 X3 = a3 + b3 L1 + e3 Conventions: Mean(L1) = 0 Then a1=mean of X1 a2 = mean of X2 a3 = mean of X3 Not particularly useful: means of LV’s by definition =0
Means and intercepts in SEM Models In longitudinal case, more interesting possibilities: Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b1 L1 + e2 X3 = a3 + b2 L1 + e3 X4 = a4 + 1.0 L2 + e4 X5 = a5 + b3 L2 + e5 X6 = a6 + b4 L2 + e6 Constrain measurement models: b1=b3 b2=b4 Constrain intercepts: a1 = a4 a2 = a5 a3 = a6 Fix Mean(L1) to 0 Can now estimate parameter for Mean (L2)
Means and intercepts in SEM Models Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b1 L1 + e2 X3 = a3 + b2 L1 + e3 Y1 = a4 + 1.0 L2 + e4 Y2 = a5 + b3 L2 + e5 Y3 = a6 + b4 L2 + e6 Constrain measurement models: b1=b3 b2=b4 Constrain intercepts: a1 = a4 a2 = a5 a3 = a6 Fix Mean(L1) to 0 Can now estimate parameter for Mean (L2) Example: X1 X2 X3 X4 X5 X6 Means: 2 3 2.5 3 4 3.5 Y1 = a4 + 1.0 L2 + e4 (E(L2)=a7 Estimate: a7=1.0 Y1 = 2 + 1.0*1 + 0 (expected value of L2=1.0) Y2 = 3 + b3*1 + 0 (expected value of L2 = 1.0) New parameter:a7
Means and intercepts in SEM Models Equations: X1 = a1 + 1.0 L1 + e1 X2 = a2 + b1 L1 + e2 X3 = a3 + b2 L1 + e3 Y1 = a4 + 1.0 L2 + e4 Y2 = a5 + b3 L2 + e5 Y3 = a6 + b4 L2 + e6 There can be a construct equation intercept parameter in causal models L2 = a7 + b1 L1 + D2 If mean(L1) fixed to 0 E(L2) = a7 + b1*0 = a7 As before, a7 represents the expected difference between the mean of L1 and the mean of L2
Means and intercepts in SEM Models L2 = a7 + b1 L1 + D2 If mean(L1) fixed to 0 E(L2) = a7 + b1*0 = a7 In practice, if L1 and L2 represent time 1 and time 2 measures of the same thing, we would expect correlated errors:
Means and intercepts in SEM Models Same principle can be applied to multiple group models: Group 1 a1[1] = a1[2] X1 = a1 + 1.0 L1 + e1 X2 = a2 + b2 L1 + e2 X3 = a3 + b3 L1 + e3 a2[1]=a2[2] a3[1]=a3[2] Mean(L1)=0 Group 2 X1 = a1 + 1.0 L1 + e1 X2 = a2 + b2 L1 + e2 X3 = a3 + b3 L1 + e3 We usually constrain measurement coefficients: b2[1]=b2[2] & b3[1]=b3[2] Mean(L1) = a4
Models for Means and Intercepts • Applications: • #1: A two-group model Group 1 V1 = a1 + 1.0L1 + E1 V2 = a2 + b1 L1 + E2 V3 = a3 + b2 L1 + E3 V4 = a4 + b3 L1 + E4 Group 2 V1 = a1 + 1.0 L1 + E1 V2 = a2 + b1 L1 + E2 V3 = a3 + b2 L1 + E3 V4 = a4 + b3 L1 + E4 Group 1 Group 2 Mean(L1) =a5 Mean(L1) =a5
Models for Means and Intercepts • Group 1 Group 2 Group 1 V1 = a1 + 1.0L1 + E1 V2 = a2 + b1 L1 + E2 V3 = a3 + b2 L1 + E3 V4 = a4 + b3 L1 + E4 Group 2 V1 = a1 + 1.0 L1 + E1 V2 = a2 + b1 L1 + E2 V3 = a3 + b2 L1 + E3 V4 = a4 + b3 L1 + E4 Mean(L1) =a5 Mean(L1) =a5 Constraints: 1. Measurement model 2. intercepts: a1[1] = a1[2] ; a2[1] = a2[2] etc. 3. a5[1] = 0 THIS MEANS THAT a5[2] represents between-group mean differences.
A practical example: • Differences in religiosity, World Values Study 1990 In PRELIS, generate mean vectors as well as covariances
Looking at item means • Means: • U.S.: • Means • v9 v147 v175 v176 • -------- -------- -------- -------- • 1.700 3.854 1.401 8.126 • Canada: • Means high = less religious except for V176 • v9 v147 v175 v176 • -------- -------- -------- -------- • 2.193 4.811 1.750 7.005
Factor Means: • We cannot establish a factor mean for each group, but we CAN get a coefficient representing the difference between the factor means • (factor mean in each group can be established trivially as equal to the mean of one of the indicators – not particularly helpful though).
LISREL TERMINOLOGY • Equations: • X1 = τx1 + λ11ξ1 + δ1 • X2 = τx2 + λ21ξ1 + δ2 • X3 = τx3 + λ31ξ1 + δ3 • X4 = τx4 + λ41ξ1 + δ4 • New vector: Tau-X (TX) • Normally, λ11 = 1.0 (reference indicator) • Variances, covariances, means: • VAR(δ1), VAR(δ2), VAR(δ3), VAR(δ4), MEAN(ξ1) • New vector: Kappa (vector of means of ξ’s)
LISREL TERMINOLOGY • Constraints: • Group 1 Group 2 • TX(1) = TX(1) • TX(2) = TX(2) • TX(3) = TX(3) • TX(4) = TX(4) • Kappa1 = 0 Kappa1 = free*
LISREL TERMINOLOGY • Constraints: • Group 1 Group 2 • TX(1) = TX(1) • TX(2) = TX(2) • TX(3) = TX(3) • TX(4) = TX(4) • Kappa1 = 0 Kappa1 = free* • Tau-X : vector of manifest variable intercepts • Kappa: vector of latent (exogenous) variable means • PROGRAMMING: • Group 1: TX=FR KA=FI • Group 2: TX=IN KA=FR
LISREL TERMINOLOGY • Equivalent for Y-variables: • Tau-Y: intercepts for manifest variable eq’s • Alpha: intercepts for construct equations • Eta1 = alpha1 + gamma ksi + zeta • Important Note: • When gammas are constrained to equality across groups, alphas represent a between-group differences in means controlling for differences in Ksi.
Factor Mean differences • Variances: • PHI USA Canada • USA KSI 1 KSI 1 • -------- • 2.751 3.268 • (0.187) (0.162) • TAU-X TAU-X is constrained to equality (both groups) • v9 v147 v175 v176 • -------- -------- -------- -------- • 1.715 3.828 1.428 8.197 • (0.023) (0.058) (0.016) (0.065) • 74.484 65.924 86.556 127.025 • KAPPA Kappa is zero in group 1 • KSI 1 Lambda-X V9 .458 • -------- V147 1.00 • 1.005 V175 .276 • (0.072) V176 -1.289 • 13.927
Models for Means and Intercepts • Testing assumptions • we have assumed that the pattern of differences between corresponding measurement equation intercepts can be expressed by a single coefficient V1 = a1 + 1.0 L1 + e1 V2 = a2 + b2 L1 + e2 V3 = a3 + b3 L1 + e3 V4 = a4 + b4 L1 + e4 L1=a5 We constrain a1,a2,a3,a4 to equality across groups and estimate a5 to represent between-group differences
Models for Means and Intercepts • What if the pattern is: • Group 1 Group 2 • v1 3.2 4.2 • v2 2.2 3.2 • v3 1.9 2.8 • v4 2.0 1.5 • a5 will be positive, but the fact that the group1-group2 difference on V4 is not consistent will lead to poorer fit Could estimate model with a1[1]=a1[2], a2[1]=a2[2], a3[1]=a3[2] BUT a4[1]a4[2]
LISREL TERMINOLOGY • LISREL: • Equations: • X1 = τx1 + λ11ξ1 + δ1 • X2 = τx2 + λ21ξ1 + δ2 • X3 = τx3 + λ31ξ1 + δ3 • X4 = τx4 + λ41ξ1 + δ4 • Normally, τx1 = 1.0 (reference indicator) • Variances, covariances, means: • VAR(δ1), VAR(δ2), VAR(δ3), VAR(δ4), MEAN(ξ1)
Models for Means and Intercepts • Modification Indices for TAU-X • v9 v147 v175 v176 • -------- -------- -------- -------- • 4.941 0.613 13.006 16.218 • We could estimate a model with TX 4 free (not essential; would be more important if chi-square really large) • Expected Change for TAU-X • v9 v147 v175 v176 • -------- -------- -------- -------- • 0.045 -0.036 0.063 0.236 • TAU-X (repeated from previous slide): • v9 v147 v175 v176 • -------- -------- -------- -------- • 1.715 3.828 1.428 8.197 • (0.023) (0.058) (0.016) (0.065) • 74.484 65.924 86.556 127.025
LISREL PROGRAMMING CODE FOR PREVIOUS EXAMPLE: • 2 group model for relig 1:USA • DA NG=2 NI=23 NO=1456 • CM FI=g:\Means&Intercepts\usa.cov • ME FI=g:\Means&Intercepts\usa.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 / • MO NX=4 NK=1 LX=FU,FI PH=SY,FR TD=SY C • TX=FR KA=FI • VA 1.0 LX 2 1 • FR LX 1 1 LX 3 1 LX 4 1 • OU ME=ML SE TV MI SC ND=3 • Group 2: Canada • DA NI=23 NO=1474 • CM FI=g:\Means&Intercepts\cdn.cov • ME FI=g:\Means&Intercepts\cdn.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 / • MO LX=IN PH=PS TD=PS KA=FR TX=IN • OU ME=ML SE TV MI SC ND=3 Do not include MA=CM New
Doing it in AMOS: Add this
AMOS: For each exogenous variable, the Object Properties box will now have Mean and Variance
AMOS: For each endogenous variable, the Object Properties box will now have an Intercept For all indicators, type in a parameter name here. For all indicators, click “all groups” to impose equality constraint.
AMOS Constraints: Group 1 Group 2 b1 = b1 b2 = b2 b3 = b3 a1 = a1 a2 = a2 a3 = a3 a4 = a4 a5=0 a5 free (parameter for mean differences)
AMOS • Group: Canada • Means • Estimate S.E. C.R. P Label • RELIG 1.005 0.072 13.931 0.000 a5 • Group: United States • Intercepts • Estimate S.E. C.R. P Label • V9 1.715 0.023 74.512 0.000 a1 • V147 3.828 0.058 65.947 0.000 a2 • V175 1.428 0.016 86.585 0.000 a3 • V176 8.197 0.065 127.068 0.000 a4 REFER TO: Model2.amw for more extended example
Moving to Y, Eta and adding a 3rd country • 2 group model for relig 1:USA • DA NG=3 NI=23 NO=1456 • CM FI=H:\Means&Intercepts\usa.cov • ME FI=H:\Means&Intercepts\usa.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 / • MO NY=4 NE=1 LY=FU,FI PS=SY,FR TE=SY C • TY=FR AL=FI • VA 1.0 LY 2 1 • FR LY 1 1 LY 3 1 LY 4 1 • OU ME=ML SE TV MI SC ND=3 • Group 2: Canada • DA NI=23 NO=1474 • CM FI=H:\Means&Intercepts\cdn.cov • ME FI=H:\Means&Intercepts\cdn.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN • OU ME=ML SE TV MI SC ND=3 • Group 3: Netherlands • DA NI=23 NO=909 • CM FI=H:\Means&Intercepts\neth.cov • ME FI=H:\Means&Intercepts\neth.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN • OU ME=ML SE TV MI SC ND=3
Mean comparisons USA=0 • ALPHA Canada • ETA 1 • -------- • 0.896 • (0.064) • 14.077 • ALPHA Netherlands • ETA 1 • -------- • 2.069 • (0.087) • 23.889 Chi-square = 280.733, df=18 With AL(1)=AL(1)=AL(1) 3 groups (i.e., AL=0 in all three groups) Chi-square = 888. 794 df=20
Mean comparisons USA=0 In USA Modification Indices for TAU-Y v9 v147 v175 v176 -------- -------- -------- -------- 0.855 6.130 13.121 2.882 In Canada: Modification Indices for TAU-Y v9 v147 v175 v176 -------- -------- -------- -------- 20.003 18.756 3.873 69.008 In the Netherlands: Modification Indices for TAU-Y v9 v147 v175 v176 -------- -------- -------- -------- 19.044 60.570 4.629 62.667
Models for Means and Intercepts: Interpreting Mean differences with exogenous variables GROUP 1 GROUP 2 Equations: L3 = a1 + b1 L1 + b2 L 2 + D3 In group 1, we will hold a1 fixed to 0. In group 2, a1 will be free. IF b1 group 1 = b1 group 2 AND b2 group 1 = b2 group 2 THEN a1 is the between-group difference in L3, controlling for the effects of L1 and L2
Lisrel model for mean comparisons with controls • 2 group model for relig 1:USA • DA NG=3 NI=23 NO=1456 • CM FI=H:\Means&Intercepts\usa.cov • ME FI=H:\Means&Intercepts\usa.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 12 13 14 / • MO NY=4 NX=3 NK=3 FIXEDX NE=1 LY=FU,FI PS=SY,FR TE=SY C • TY=FR AL=FI GA=FU,FR KA=FI TX=FR • VA 1.0 LY 2 1 • FR LY 1 1 LY 3 1 LY 4 1 • OU ME=ML SE TV MI SC ND=3 • Group 2: Canada • DA NI=23 NO=1474 • CM FI=H:\Means&Intercepts\cdn.cov • ME FI=H:\Means&Intercepts\cdn.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 12 13 14 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN FIXEDX GA=IN KA=FR TX=IN • OU ME=ML SE TV MI SC ND=3 • Group 3: Netherlands • DA NI=23 NO=909 • CM FI=H:\Means&Intercepts\neth.cov • ME FI=H:\Means&Intercepts\neth.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 12 13 14 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN FIXEDX GA=IN KA=FR TX=IN • OU ME=ML SE TV MI SC ND=3
Lisrel model for mean comparisons with controls GROUP #1 SPECIFICATION: MO NY=4 NX=3 NK=3 FIXEDX NE=1 LY=FU,FI PS=SY,FR TE=SY C TY=FR AL=FI GA=FU,FR KA=FI TX=FR • Group 3: Netherlands • DA NI=23 NO=909 • CM FI=H:\Means&Intercepts\neth.cov • ME FI=H:\Means&Intercepts\neth.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 12 13 14 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN FIXEDX GA=IN KA=FR TX=IN • OU ME=ML SE TV MI SC ND=3 TX parameters constrained to = Exogenous variable mean =0 in group 1 Exogenous variable mean reflects difference from group 1
Lisrel model for mean comparisons with controls GROUP #1 SPECIFICATION: MO NY=4 NX=3 NK=3 FIXEDX NE=1 LY=FU,FI PS=SY,FR TE=SY C TY=FR AL=FI GA=FU,FR KA=FI TX=FR • Group 3: Netherlands • DA NI=23 NO=909 • CM FI=H:\Means&Intercepts\neth.cov • ME FI=H:\Means&Intercepts\neth.mn • LABELS • v9 v147 v151 v175 v176 v304 v305 v307 v308 v309 v310 v355 v356 sex • occup1 occup2 occup3 occup4 occup5 occup6 occup7 occup8 occup9 • SE • 1 2 4 5 12 13 14 / • MO LY=IN PS=PS TE=PS AL=FR TY=IN FIXEDX GA=IN KA=FR TX=IN • OU ME=ML SE TV MI SC ND=3 Alpha zero in group 1 Group m coefficient represents differences from group 1 GA matrix fixed to invariance (ksi- variables have same effect in each group)
Mean differences, with controls • ALPHA CANADA • ETA 1 • -------- • 0.854 • (0.062) • 13.822 • KAPPA • v355 v356 sex • -3.465 -0.391 0.008 • (0.621) (0.085) (0.018) • -5.579 -4.592 0.410 • ALPHA • ETA 1 • -------- • 2.080 • (0.086) • 24.324 • KAPPA • v355 v356 sex • -------- -------- -------- • -4.017 -0.908 -0.059 • (0.703) (0.111) (0.021) • -5.711 -8.179 -2.812
Models for Means and Intercepts GROUP 1 GROUP 2 L3 = a1[1] + b1[1]L1 + b2[1]L2 + D3 L3 = a1[2] + b1[2]L1 + b2[2]L2 + D3 Models/constraints: {1} a1[1]=0 (always) {2} b1[1] = b1[2] and b2[1]=b2[2] (normally; parallel slopes) a1[2]=0 vs. a1[2] 0 under {2}: mean diff’s controlling for L1,L2 a1[2]=0 vs. a1[2] 0 under b1=b2=0: mean diff’s without controls
Models for Means and Intercepts • If slopes of all exogenous variables (L1 and L2 in this example) are parallel, a1 is the mean difference controlling for exog. var’s b1 b1 a1
Models for Means and Intercepts • What if slopes are not parallel? L3 L1 A1 only represents between-group difference when L1=0 Between-group difference contingent upon value of L1
Models for Means and Intercepts • #2 A longitudinal model Fix measurement model intercepts to equality (We would also normally fix measurement model b coefficients to equality) b5 Equations: LVTime2 = a6 + b5*LVTime1 + D2 LVTime1 = a5 Fix a5=0; a6 represents change in level over time