1 / 37

Using the models, prediction, deciding

Using the models, prediction, deciding. Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 7b , March 7, 2014. scatterplotMatrix. Hierarchical clustering. > dswiss <- dist ( as.matrix ( swiss ) ) > hs <- hclust ( dswiss ) > plot( hs ). ctree. require(party)

cyndi
Download Presentation

Using the models, prediction, deciding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using the models, prediction, deciding Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 7b, March 7, 2014

  2. scatterplotMatrix

  3. Hierarchical clustering > dswiss<- dist(as.matrix(swiss)) > hs<- hclust(dswiss) > plot(hs)

  4. ctree require(party) swiss_ctree<- ctree(Fertility ~ Agriculture + Education + Catholic, data = swiss) plot(swiss_ctree)

  5. pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species”, pch= 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

  6. splom extra! require(lattice) super.sym<- trellis.par.get("superpose.symbol") splom(~iris[1:4], groups = Species, data = iris, panel = panel.superpose, key = list(title = "Three Varieties of Iris", columns = 3, points = list(pch = super.sym$pch[1:3], col = super.sym$col[1:3]), text = list(c("Setosa", "Versicolor", "Virginica")))) splom(~iris[1:3]|Species, data = iris, layout=c(2,2), pscales = 0, varnames = c("Sepal\nLength", "Sepal\nWidth", "Petal\nLength"), page = function(...) { ltext(x = seq(.6, .8, length.out = 4), y = seq(.9, .6, length.out = 4), labels = c("Three", "Varieties", "of", "Iris"), cex = 2) })

  7. parallelplot(~iris[1:4] | Species, iris)

  8. parallelplot(~iris[1:4], iris, groups = Species, horizontal.axis = FALSE, scales = list(x = list(rot = 90)))

  9. hclust for iris

  10. plot(iris_ctree)

  11. Ctree > iris_ctree<- ctree(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data=iris) > print(iris_ctree) Conditional inference tree with 4 terminal nodes Response: Species Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width Number of observations: 150 1) Petal.Length <= 1.9; criterion = 1, statistic = 140.264 2)* weights = 50 1) Petal.Length > 1.9 3) Petal.Width <= 1.7; criterion = 1, statistic = 67.894 4) Petal.Length <= 4.8; criterion = 0.999, statistic = 13.865 5)* weights = 46 4) Petal.Length > 4.8 6)* weights = 8 3) Petal.Width > 1.7 7)* weights = 46

  12. > plot(iris_ctree, type="simple”)

  13. New dataset to work with trees fitK <- rpart(Kyphosis ~ Age + Number + Start, method="class", data=kyphosis) printcp(fitK) # display the results plotcp(fitK) # visualize cross-validation results summary(fitK) # detailed summary of splits # plot tree plot(fitK, uniform=TRUE, main="Classification Tree for Kyphosis") text(fitK, use.n=TRUE, all=TRUE, cex=.8) # create attractive postscript plot of tree post(fitK, file = “kyphosistree.ps", title = "Classification Tree for Kyphosis") # might need to convert to PDF (distill)

  14. > pfitK<- prune(fitK, cp= fitK$cptable[which.min(fitK$cptable[,"xerror"]),"CP"]) > plot(pfitK, uniform=TRUE, main="Pruned Classification Tree for Kyphosis") > text(pfitK, use.n=TRUE, all=TRUE, cex=.8) > post(pfitK, file = “ptree.ps", title = "Pruned Classification Tree for Kyphosis”)

  15. > fitK <- ctree(Kyphosis ~ Age + Number + Start, data=kyphosis) > plot(fitK, main="Conditional Inference Tree for Kyphosis”)

  16. > plot(fitK, main="Conditional Inference Tree for Kyphosis",type="simple")

  17. randomForest > require(randomForest) > fitKF<- randomForest(Kyphosis ~ Age + Number + Start, data=kyphosis) > print(fitKF) # view results Call: randomForest(formula = Kyphosis ~ Age + Number + Start, data = kyphosis) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 1 OOB estimate of error rate: 20.99% Confusion matrix: absent present class.error absent 59 5 0.0781250 present 12 5 0.7058824 > importance(fitKF) # importance of each predictor MeanDecreaseGini Age 8.654112 Number 5.584019 Start 10.168591 Random forests improve predictive accuracy by generating a large number of bootstrapped trees (based on random samples of variables), classifying a case using each tree in this new "forest", and deciding a final predicted outcome by combining the results across all of the trees (an average in regression, a majority vote in classification).

  18. More on another dataset. # Regression Tree Example library(rpart) # build the tree fitM <- rpart(Mileage~Price + Country + Reliability + Type, method="anova", data=cu.summary) printcp(fitM) # display the results …. Root node error: 1354.6/60 = 22.576 n=60 (57 observations deleted due to missingness) CP nsplitrel error xerrorxstd 1 0.622885 0 1.00000 1.03165 0.176920 2 0.132061 1 0.37711 0.51693 0.102454 3 0.025441 2 0.24505 0.36063 0.079819 4 0.011604 3 0.21961 0.34878 0.080273 5 0.010000 4 0.20801 0.36392 0.075650

  19. Mileage… plotcp(fitM) # visualize cross-validation results summary(fitM) # detailed summary of splits <we will leave this for Friday to look at>

  20. par(mfrow=c(1,2)) rsq.rpart(fitM) # visualize cross-validation results

  21. # plot tree plot(fitM, uniform=TRUE, main="Regression Tree for Mileage ") text(fitM, use.n=TRUE, all=TRUE, cex=.8) # prune the tree pfitM<- prune(fitM, cp=0.01160389) # from cptable # plot the pruned tree plot(pfitM, uniform=TRUE, main="Pruned Regression Tree for Mileage") text(pfitM, use.n=TRUE, all=TRUE, cex=.8) post(pfitM, file = ”ptree2.ps", title = "Pruned Regression Tree for Mileage”)

  22. # Conditional Inference Tree for Mileage fit2M <- ctree(Mileage~Price + Country + Reliability + Type, data=na.omit(cu.summary))

  23. Enough of trees!

  24. Bayes > cl <- kmeans(iris[,1:4], 3) > table(cl$cluster, iris[,5]) setosaversicolorvirginica 2 0 2 36 1 0 48 14 3 50 0 0 # > m <- naiveBayes(iris[,1:4], iris[,5]) > table(predict(m, iris[,1:4]), iris[,5]) setosaversicolorvirginica setosa 50 0 0 versicolor 0 47 3 virginica 0 3 47 pairs(iris[1:4],main="Iris Data (red=setosa,green=versicolor,blue=virginica)", pch=21, bg=c("red","green3","blue")[unclass(iris$Species)])

  25. Digging into iris classifier<-naiveBayes(iris[,1:4], iris[,5]) table(predict(classifier, iris[,-5]), iris[,5], dnn=list('predicted','actual')) actual predicted setosaversicolorvirginica setosa 50 0 0 versicolor 0 47 3 virginica 0 3 47

  26. Digging into iris > classifier$apriori iris[, 5] setosaversicolorvirginica 50 50 50 > classifier$tables$Petal.Length Petal.Length iris[, 5] [,1] [,2] setosa 1.462 0.1736640 versicolor 4.260 0.4699110 virginica 5.552 0.5518947

  27. Digging into iris plot(function(x) dnorm(x, 1.462, 0.1736640), 0, 8, col="red", main="Petal length distribution for the 3 different species") curve(dnorm(x, 4.260, 0.4699110), add=TRUE, col="blue") curve(dnorm(x, 5.552, 0.5518947 ), add=TRUE, col = "green")

  28. http://www.ugrad.stat.ubc.ca/R/library/mlbench/html/HouseVotes84.htmlhttp://www.ugrad.stat.ubc.ca/R/library/mlbench/html/HouseVotes84.html > require(mlbench) > data(HouseVotes84) > model <- naiveBayes(Class ~ ., data = HouseVotes84) > predict(model, HouseVotes84[1:10,-1]) [1] republican republican republican democrat democrat democrat republican republican republican [10] democrat Levels: democrat republican

  29. House Votes 1984 > predict(model, HouseVotes84[1:10,-1], type = "raw") democratrepublican [1,] 1.029209e-07 9.999999e-01 [2,] 5.820415e-08 9.999999e-01 [3,] 5.684937e-03 9.943151e-01 [4,] 9.985798e-01 1.420152e-03 [5,] 9.666720e-01 3.332802e-02 [6,] 8.121430e-01 1.878570e-01 [7,] 1.751512e-04 9.998248e-01 [8,] 8.300100e-06 9.999917e-01 [9,] 8.277705e-08 9.999999e-01 [10,] 1.000000e+00 5.029425e-11

  30. House Votes 1984 > pred<- predict(model, HouseVotes84[,-1]) > table(pred, HouseVotes84$Class) pred democrat republican democrat 238 13 republican 29 155

  31. So now you could complete this: > data(HairEyeColor) > mosaicplot(HairEyeColor) > margin.table(HairEyeColor,3) Sex Male Female 279 313 > margin.table(HairEyeColor,c(1,3)) Sex Hair Male Female Black 56 52 Brown 143 143 Red 34 37 Blond 46 81 Construct a naïve Bayes classifier and test.

  32. Assignments to come… • Term project (A6). Due ~ week 13. 30% (25% written, 5% oral; individual). • Assignment 7: Predictive and Prescriptive Analytics. Due ~ week 9/10. 20% (15% written and 5% oral; individual);

  33. Coming weeks • I will be out of town Friday March 21 and 28 • On March 21 you will have a lab – attendance will be taken – to work on assignments (term (6) and assignment 7). Your project proposals (Assignment 5) are on March 18. • On March 28 you will have a lecture on SVM, thus the Tuesday March 25 will be a lab. • Back to regular schedule in April (except 18th)

  34. Admin info (keep/ print this slide) • Class: ITWS-4963/ITWS 6965 • Hours: 12:00pm-1:50pm Tuesday/ Friday • Location: SAGE 3101 • Instructor: Peter Fox • Instructor contact: pfox@cs.rpi.edu, 518.276.4862 (do not leave a msg) • Contact hours: Monday** 3:00-4:00pm (or by email appt) • Contact location: Winslow 2120 (sometimes Lally 207A announced by email) • TA: Lakshmi Chenicheri chenil@rpi.edu • Web site: http://tw.rpi.edu/web/courses/DataAnalytics/2014 • Schedule, lectures, syllabus, reading, assignments, etc.

More Related