1 / 51

Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7679 0592

GEOGG141/ GEOG3051 Principles & Practice of Remote Sensing (PPRS) G round segment, pre-processing & scanning. Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7679 0592 Email: mdisney@ucl.geog.ac.uk http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG141/GEOGG141.html

cyrah
Download Presentation

Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7679 0592

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEOGG141/ GEOG3051Principles & Practice of Remote Sensing (PPRS)Ground segment, pre-processing & scanning Dr. Mathias (Mat) Disney UCL Geography Office: 113, Pearson Building Tel: 7679 0592 Email: mdisney@ucl.geog.ac.uk http://www2.geog.ucl.ac.uk/~mdisney/teaching/GEOGG141/GEOGG141.html http://www2.geog.ucl.ac.uk/~mdisney/teaching/3051/GEOG3051.html

  2. Recap • Last session • orbits and swaths • Temporal & angular sampling/resolution + radiometric resolution • This session • data size, storage & transmission • pre-processing stages (transform raw data to “products”) • sensor scanning mechanisms

  3. nColumns nColumns (0,0) (0,0) nBands nBands nRows nRows (r,c) (r,c) Time Data volume? • Size of digital image data easy (ish) to calculate • size = (nRows * nColumns * nBands * nBitsPerPixel) bits • in bytes = size / nBitsPerByte • typical file has header information (giving rows, cols, bands, date etc.)

  4. Aside • Several ways to arrange data in binary image file • Band sequential (BSQ) • Band interleaved by line (BIL) • Band interleaved by pixel (BIP) From http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp6/cp6-4.htm

  5. Data volume: examples • Landsat ETM+ image? Bands 1-5, 7 (vis/NIR) • size of raw binary data (no header info) in bytes? • 6000 rows (or lines) * 6600 cols (or samples) * 6 bands * 1 byte per pixel = 237600000 bytes ~ 237MB • actually 226.59 MB as 1 MB  1x106 bytes, 1MB actually 220 bytes = 1048576 bytes • see http://www.matisse.net/mcgi-bin/bits.cgi • Landsat 7 has 375GB on-board storage (~1500 images) Details from http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter6/chapter6.htm

  6. Data volume: examples • MODIS reflectance 500m tile (not raw swath....)? • 2400 rows (or lines) * 2400 cols (or samples) * 7 bands * 2 bytes per pixel (i.e. 16-bit data) = 80640000 bytes = 77MB • Actual file also contains 1 32-bit QC (quality control) band & 2 8-bit bands containing other info. • BUT 44 MODIS products, raw radiance in 36 bands at 250m • Roughly 4800 * 4800 * 36 * 2 ~ 1.6GB per tile, so 100s GB data volume per day! Details from http://edcdaac.usgs.gov/modis/mod09a1.asp and http://edcdaac.usgs.gov/modis/mod09ghk.asp

  7. Transmission, storage and processing • Ground segment • receiving stations capture digital data transmitted by satellite • A: direct if Ground Receiving Station (GRS) visible • B: storage on board for later transmission • C: broadcast to another satellite (typically geostationary telecomms) known as Tracking and Data Relay Satellite System (TDRSS) From http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter2/chapter2_15_e.html

  8. Transmission, storage and processing • Ground receiving station • dish to receive raw data (typically broadcast in wave) • data storage and archiving facilities • possibly processing occurs at station (maybe later) • dissemination to end users From http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter2/chapter2_15_e.html

  9. Transmission, storage and processing • Ground receiving station, Kiruna, Sweden From http://www.esa.int/SPECIALS/ESOC/SEMZEEW4QWD_1.html#subhead1

  10. Transmission, storage and processing • Scale? • can be very small-scale these days • dish or aerial for METEOSAT-type data • desktop PC and some disk space

  11. E.g. MODIS direct broadcast (DB) • MODIS DB • ideal for smaller organisations, developing nations etc. • Only need 3m dish and some hardware • Pre-processing stage can be VERY complex! • Before you let users loose.... From http://daac.gsfc.nasa.gov/DAAC_DOCS/direct_broadcast/

  12. (Pre)Processing chain • Task of turning raw top-of-atmosphere (TOA) radiance values (raw DN) into useful information • geophysical variables, products etc. DERIVED from radiance • Can be very complex, time- (and space) consuming • BUT pre-processing determines quality of final products • e.g. reflectance, albedo, surface temperature, NDVI, leaf area index (LAI), suspended organic matter (SOM) content etc. etc. • typically require ancillary information, models etc. • combined into algorithm for turning raw data into information

  13. (Pre?) Processing chain • Typically: • radiometric calibration • radiometric correction • atmospheric correction • geometric correction/registration

  14. DNout DNin Radiometric calibration • Account for sensor response • cannot assume sensor response is linear • account for non-linearities via pre-launch and/or in-orbit calibration • On-board black body (A/ATSR), stable targets (AVHRR), inter-sensor comparisons etc.

  15. Processing chain • Typically: • radiometric calibration • radiometric correction • atmospheric correction • geometric correction/registration

  16. CHRIS-PROBA image over Harwood Forest, Northumberland, UK, 9/5/2004 Radiometric correction • Remove radiometric artifacts • dropped lines • detectors in CCD may have failed • fix by interpolating DNs either side? • Automate? • Topographic effects? See http://www.chris-proba.org.uk

  17. Radiometric correction • Remove radiometric artifacts • striping • deterioration of detectors with time (& non-linearities) • Filter in Fourier domain to remove periodic striping From http://visibleearth.nasa.gov/cgi-bin/viewrecord?7386

  18. Fourier domain filtering • Filter periodic noise/aretfacts Fourier transform (to freq. domain) Convolve with Fourier domain filter Apply inverse FT From http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm

  19. Processing chain • Typically: • radiometric calibration • radiometric correction • atmospheric correction • geometric correction/registration

  20. R R 2 1 target target R 4 R 3 target target Remember? Interactions with the atmosphere • Notice that target reflectance is a function of • Atmospheric irradiance (path radiance: R1) • Reflectance outside target scattered into path (R2) • Diffuse atmospheric irradiance (scattered onto target: R3) • Multiple-scattered surface-atmosphere interactions (R4) From: http://www.geog.ucl.ac.uk/~mdisney/phd.bak/final_version/final_pdf/chapter2a.pdf

  21. Atmospheric correction: simple • So....need to remove impact of atmosphere on signal i.e. turn raw TOA DN into at-ground reflectance • Simple methods? • Convert DN to apparent radiance Lapp – sensor dynamic range • Convert Lapp to apparent reflectance (knowing response of sensor) • Convert to intrinsic surface property - at-ground reflectance in this case, by accounting for atmosphere

  22. Radiance, L Offset assumed to be atmospheric path radiance (plus dark current signal) Regression line L = G*DN + O (+) DN Target DN values Atmospheric correction: simple • Simple methods • e.g. empirical line correction (ELC) method • Use target of “known”, low and high reflectance targets in one channel e.g. non-turbid water & desert, or dense dark vegetation & snow • Assuming linear detector response, radiance, L = gain * DN + offset • e.g. L = DN(Lmax - Lmin)/255 + Lmin Lmax Lmin

  23. Atmospheric correction: simple • Drawbacks • require assumptions of: • Lambertian surface (ignore angular effects) • Large, homogeneous area (ignore adjacency effects) • Stability (ignore temporal effects) • Also, per-band not per pixel so assumes • atmospheric effects invariant across image • illumination invariant across image • ok for narrow swath (e.g. airborne) but no good for wide swath

  24. Haze due to scan angle of instruments Airborne Thematic Mapper (ATM) data over Harwood Forest, Northumberland, UK, 13/7/2003 Compact Airborne Spectrographic Imager (CASI) data over Harwood Forest, Northumberland, UK, 13/7/2003 Example: airborne data See: http://www.nerc.ac.uk/arsf

  25. Atmospheric correction: complex • Atmospheric radiative transfer modelling • use detailed scattering models of atmosphere including gas and aerosols • Second Simulation of Satellite Signal in Solar Spectrum (6s) • MODTRAN/LOWTRAN • SMAC etc. http://www-loa.univ-lille1.fr/Msixs/msixs_gb.html http://geosci.uchicago.edu/~archer/cgimodels/radiation.html

  26. Atmospheric correction: complex • Radiative transfer models such as 6S require: • Geometrical conditions (view/illum. angles) • Atmospheric model for gaseous components (Rayleigh scattering) • H2O, O3, aerosol optical depth,  (opacity) • Aerosol model (type and concentration) (Mie scattering) • Dust, soot, salt etc. • Spectral condition • bands and bandwidths • Ground reflectance (type and spectral variation) • surface BRDF (default is to assume Lambertian….) • If no info. use default values (Standard Atmosphere) From: http://www.geog.ucl.ac.uk/~mdisney/phd.bak/final_version/final_pdf/chapter2a.pdf

  27. Atmospheric correction • Can measure  from ground and/or use multi-angle viewing to obtain different path lengths through atmos e.g. MISR, CHRIS • infer optical depth and path radiance AND aerosols • so use data themselves to infer atmos. scattering From:http://visibleearth.nasa.gov/cgi-bin/viewrecord?129

  28. Atmospheric correction: summary • Convert TOA radiance to at-ground reflectance • VERY important to get right (can totally dominate signal) • Simple methods • e.g. ELC but rough and ready and require many assumptions • Complex methods • e.g. 6S but require much ancillary assumptions • BUT can use multi-angle measurements to correct • i.e. treat atmosphere as PART of surface parameter retrieval problem • different view angles give different PATH LENGTH

  29. Processing chain • Typically: • radiometric calibration • radiometric correction • atmospheric correction • geometric correction/registration

  30. Geometric correction • Account for distortion in image due to motion of platform and scanner mechanism • Particular problem for airborne data: distortion due to roll, pitch, yaw From:http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

  31. Geometric correction • Airborne data over Barton Bendish, Norfolk, 1997 • Resample using ground control points • various warping and resampling methods • nearest neighbour, bilinear or bicubic interpolation.... • Resample to new grid (map)

  32. Corrected to sza = 45° vza = 0 ° AVHRR bands 1 & 2 uncorrected BRDF effects? • Multi-temporal observations have varying sun/view angles • To compare images from different dates, need same view/illum. conditions i.e. account for BRDF effects • fit BRDF model & use to normalise reflectance e.g. to nadir view/illum. • e.g. MODIS NBAR nadir BRDF-adjusted reflectance (http://geography.bu.edu/brdf/userguide/nbar.html) From:http://www.ccrs.nrcan.gc.ca/ccrs/rd/apps/landcov/corr/brdf_e.html

  33. Movable sensor head: alter view zen. angle Azimuthal rail: alter view azimuth angle BRDF effects? • Field measurements of BRDF: goniometer e.g. European Goniometric Facility (EGO) at JRC, & FIGO in CH • http://www.geo.unizh.ch/rsl/research/SpectroLab/goniometry/index.shtml ASIDE: Chapter (12) in Liang (2004) book on validation, sampling; Also Jensen chapter (11)

  34. Pre-processing: summary • Convert raw DN to useful information • calibrate instrument response and remove radiometric blunders • remove atmospheric effects • remove BRDF effects? • resample onto grid • Results in more fundamental property e.g. surface reflectance, emissivity etc. • NOW apply scientific algorithm to convert reflectance to LAI, fAPAR, albedo, ocean colour etc. etc. etc.

  35. Sensor scanning characteristics • Range of scanning mechanisms to build up images • Different applications, different image characteristics and pros/cons for each type • scanning mechanisms: electromechanical • discrete detectors • whiskbroom scanners • pushbroom scanners • digital frame cameras

  36. Separate bands Lens Scan mirror Sensor path Dichroic mirrors Discrete detectors • Mirror can rotate or scan • individual detectors record signal in different bands • How do we split signal into separate bands? • Dichroic mirror or prism Adapted from Jensen, 2000, p. 184

  37. Dichroic lens/prism Sensor motion Scanning mechanisms: across track • 3 main types of electromechanical (detectors, optics plus mechanical scanning) mechanisms • across track or “whiskbroom” scanner (mechanical) • linear detectors array (electronic) • beam splitter / dichroic / prism / filters splits incoming signal into separate wavelength regions From Jensen, J. (2000) Remote sensing: and Earth resource perspective, p. 184

  38. IFOV sweeps surface Scanning mechanisms: across track • Whiskbroom scanner • Mirror either rotates fully, or oscillates • Oscillation can have delays at either end of scan (vibration?) • Restricted “dwell time” requires tradeoff with no. of bands to give acceptable SNR • motion of platform and mirror causes image distortion • Diameter of IFOV on surface  H • H = flying height;  = nominal angular IFOV in radians • e.g. For 2.5 mrad IFOV, H = 3000m, D = 2.5x10-3x3000 = 7.5m • Typically .5 to 5 mrad - tradeoff of spatial resolution v SNR Adapted from Lillesand, Kiefer and Chipman, 2004 p. 332 Examples: Landsat MSS, TM and ETM, AVHRR, (MODIS) See Jensen Chapter 7

  39. Sensor motion Sensor motion Scanning mechanisms: along track • Pushbroom scanner • pixels recorded line by line, using forward motion of sensor • less distortion across track but overlap to avoid gaps • No moving parts so less to go wrong and longer “dwell time” • BUT needs v. good calibration to avoid striping • Ground-sampled distance (GSD) in x-track direction fixed by CCD element size • GSD along-track fixed by detector sampling interval (T) used for AD conversion Examples: SPOT HRVIR and Vegetation, MISR, IKONOS, QuickBird See Jensen Chapter 7 From: http://ceos.cnes.fr:8100/cdrom/ceos1/irsd/pages/datacq4.htm & J. Jensen (2000)

  40. Sensor motion Scanning mechanisms • Central perspective / digital frame camera area arrays • Multitple CCD arrays • Silicon (vis/NIR), HgCdTe (SWIR/LWIR)? • Similar image distortion to film camera • distortion increases radially away from focal point From: http://ceos.cnes.fr:8100/cdrom/ceos1/irsd/pages/datacq4.htm & Jensen (2000)

  41. Scanning mechanisms: examples • Discrete detectors and scanning mirrors • Landsat MSS, TM, ETM+, NOAA GOES, AVHRR, ATSR • Multispectral linear arrays • SPOT (1-3) HRV, HRVIR & SPOT-VGT, IKONOS, ASTER & MISR (both on board NASA Terra) • Imaging spectrometers using linear and area arrays • AVIRIS, CASI, MODIS (on NASA Terra and Aqua) From: http://ceos.cnes.fr:8100/cdrom/ceos1/irsd/pages/datacq4.htm & Jensen (2000)

  42. MODIS scan mirror http://modis.gsfc.nasa.gov/about/scanmirror.html • Continuously rotating and double-sided • SEVIRI (Spinning Enhanced Vis and IR Imager) on board MSG • Whole satellite rotates • Vertical scan plus rotation = image Scanning mechanisms: examples

  43. nr line r Along track pixel Frame Across track Scanning mechanisms: continued • Image frame created by scanning detector footprint • n pixels per line, pixel size r * r • Along track speed v ms-1 so footprint travels distance r in r/v secs •  One line of data must be acquired in <= r/v secs • Typical v? • Orbital period T ~ 100 mins, Earth radius ~ 6.4x103m • v = 2*6.4x103 / 100*60 = 6.7x103ms-1

  44. X-track scan (whiskbroom) Start rv Platform has moved r in rv secs Scanning mechanisms: single detector • Even if we obtain 1 line in r/v secs say..... • Significant along-track displacement from start to end of x-track scan line

  45. Active scan r/2 r flyback Speed, v Scanning mechanisms: single detector • Zig-zag mechanism • active scan lasts r/2v secs • n pixels per line, so “dwell time” (seconds per pixel) is r/2nv secs/pixel • ok for low res e.g. AVHRR, as large r • But problems for mod - high res. • E.g. Landsat MSS, r = 70m, v = 7x103ms-1 n=3000 so dwell time = 70/2*3000*7x103 = 1.7secs (OK for SNR) • BUT with single detector, required length of scan cycle r/v is 10msecs (70/7x103) • = 100 scan cycles per second • TOO FAST!

  46. T = 0 WEST T = 53ms Active scan 474m EAST T = 73.4ms 185km (swath width) Scanning mechanisms: e.g. MSS • MSS has 4x6 array of receptors - 4 bands, 6 receptors per band • 6 lines scanned simultaneously • ‘footprint’ of single receptor follows a zig-zag track • ~30 cycles per second

  47. Active r Active Active Speed, v Scanning mechanisms: boustrophedon • Alternative right  left, left  right • 2 n line pixels scanned in r/v secs •  r/2nv secs/pixel • For TM for e.g. r = 30m, v = 7x103ms-1, n = 6000 pixels •  dwell time 0.36 sec (not long enough for good SNR) • scan cycle ~4.3msecs(>220 s-1) • Way too fast i.e. single detector operation inadequate for TM • use 6 detectors per band (vis), and 16 lines at a time in vis, 4 at a time in thermal • 100 detectors total From: http://rst.gsfc.nasa.gov/Intro/Part2_20.html

  48. Aside: CCD • Charge Couple Device From http://www.na.astro.it/datoz-bin/corsi?l1a

  49. Aside: CCD • Photons arrive (through optics and filters) and generate free electrons in CCD elements (few x106 on a CCD) • More photons == more electrons collected • Charge coupling: CCD design allows all packets of charged electrons to be moved one row at a time by varying voltage of adjacent rows across CCD - cascade effect • i.e. Count is done at one point (lower corner) – so delay due to read time • http://electronics.howstuffworks.com/digital-camera2.htm • http://www.oceanoptics.com/technical/operatingprinciples.asp

  50. Aside: CCD • Si (Silicon) CCD • vis/NIR up to ~ 1.1μm • InGaAs (Indium Gallium Arsenide) • IR (~0.9 - 1.6 μm) • InSb (Indium Antimonide) • mid-IR ~3.5 - 4μm • HgCdTe (Mercury Cadmium Telluride) • IR (~10 – 12 μm)

More Related