620 likes | 1.06k Views
Chapter 13. The Group 13 Elements. The Elements. History. Hans Christian Oersted (1777-1851) In 1825, 3K ( Hg ) + AlCl 3 ( s ) Al( s ) + 3KCl( s ) + Hg( l ) Friedrich W öhler (1800-1882) In 1827, 3K( l ) + AlCl 3 ( s ) Al( s ) + 3KCl( s ). Group Trends. Melting and boiling points
E N D
Chapter 13 The Group 13 Elements
History • Hans Christian Oersted (1777-1851) • In 1825, 3K(Hg) + AlCl3(s) Al(s) + 3KCl(s) + Hg(l) • Friedrich Wöhler (1800-1882) • In 1827, 3K(l) + AlCl3(s) Al(s) + 3KCl(s)
Group Trends • Melting and boiling points • no apparent trend in melting points • decreasing trend in boiling points
Group Trends • Melting and boiling points • each element has different arrangments in the solid phase 2180°C 660°C 30°C 157°C 303°C Boron Rhombohedral Aluminum CCP Gallium Orthorhombic Indium Tetragonal Thallium HCP
Group Trends • Bond formation • favors covalent bond formation • high charge densities
Group Trends • Bond formation • hydrated ions are the only stable ionic complexes • [Al(OH2)6]3+ • [Ga(OH2)6]3+ • [In(OH2)6]3+ • [Tl(OH2)6]3+
Group Trends • Oxidation states • B and Al only exhibit +3 • Ga, In, and Tl exhibit both +3 and +1 • +3 most common for Ga and In • +1 most common for Tl • can have a mixed oxidation state • GaCl2 • [Ga]+[GaCl4]-
Boron • Semimetal • mostly nonmetallic properties • Obtained by heating the oxide with magnesium B2O3(s) + 3Mg(l) 2B(s) + 3MgO(s) MgO(s) + 2H3O+(aq) + H2O(l) [Mg(OH2)4]2+(aq)
Boron • Natural occurrence • found most in salts around volcanic areas • borax • Na2B4O7·10H2O • [B4O5(OH)4]2- • kernite • Na2B4O7·4H2O
Boron • Deposits • largest found at Boron, California • 10 km2 • beds of kernite up to 50 m thick
Boron • Worldwide production • over 3 million tons • 35% used to manufacture borosilicate glass • Pyrex® • highly resistant to cracking under heat
Boron • 20% used to manufacture borax • cleaning agent • NaBO3 is now more commonly used • [B2(O2)2(OH)4]2-
Boron • Sodium peroxoborate [B4O5(OH)4]2-(aq) + 4H2O2(aq) + 2OH-(aq) 2[B2(O2)2(OH)4]2-(aq) + 3H2O(l) • 5 x 105 tons produced annually • used in Europe as a bleaching agent
Boron • Control rods in nuclear power plants • strong absorber of neutrons • Wood preservatives • Fire-retardant in fabrics • Flux in soldering
Borides • Binary compounds of boron • very hard • high melting • chemically resistant • Boron carbide • B4C (empirical) • B12C3
Borides • Boron carbide • one of the hardest substances known • high tensile strength • used in bulletproof clothing • bulletproof plates in armored vehicles • bicycle frames 2B2O3(s) + 7C(s) B4C(s) + 6CO(g)
Borides • Titanium boride • TiB2 2TiO2(s) + B4C(s) + 3C(s) 2TiB2(s) + 4CO(g) • hexagonal layers of boron • Magnesium boride • superconducting
Boranes • Diborane • B2H6 • 200 tons produced annually 2BF3(g) + 6NaH(s) B2H6(g) + 6NaF(s) • highly reactive • toxic • colorless
Boranes • Diborane • burns in air B2H6(g) + 3O2(g) B2O3(s) + 3H2O(g) • reacts with water B2H6(g) + 6H2O(l) 2H3BO3(s) + 3H2(g) • undergoes hydroboration B2H6(g) + 6CH2=CHCH3(g) 2B(CH2CH2CH3)3(l)
Boranes • nido-boranes • BnHn+4 • B10H14 (decaborane(14)) • arachno-boranes • BnHn+6 • B4H10 (tetraborane(10))
Boranes • Was studied as a potential rocket fuel • Now, main interest is in their unique structures • B2H7- • B12H122-
Sodium Tetrahydridoborate • NaBH4 • BH4- used largely in organic synthesis • reducing agent 2NaH(s) + B2H6(g) 2NaBH4(s) • sodium chloride crystal structure
Boron Trifluoride • BF3 • does not dimerize • one of the strongest single bonds known • 613 kJ/mol
Boron Trifluoride • Used as a Lewis acid • dative covalent bonding • “to donate”
Boron Trichloride • smallest of covalently bound chlorides • gas at room temperature • reacts vigorously with water BCl3(g) + 3H2O(l) H3BO3(aq) + 3HCl(aq)
Boron Neutron Capture Theory(BNCT) • under investigation as a cancer therapy • radioactive source kills only cancerous cells • boron can easily capture a neutron • large cross-sectional area
BNCT • What happens? • the energy of this process propels the atoms through cells destroying them • problems occur in getting them to the malignant cells only
Aluminum • Highly, negative reduction potential (-1.66V) • highly reactive 4Al(s) + 3O2(g) 2Al2O3(s)
Aluminum • Anodized • provides a thicker layer of the oxide
Aluminum Uses • Construction metal • low density (2.7 g/cm3) • magnesium (1.7 g/cm3) • iron (7.9 g/cm3)
Aluminum Uses • Cookware • good conductor of heat
Aluminum Uses • Wiring • good conductor of electricity
Aluminum Chemical Properties • Burns with oxygen and other halogens 4Al(s) + 3O2(g) 2Al2O3(s) 2Al(s) + 3F2(g) 2AlF3(s) • Amphoteric 2Al(s) + 6H+(aq) 2Al3+(aq) + 3H2(g) 2Al(s) + 2OH-(aq) + 6H2O(l) 2[Al(OH)4]-(aq) + 3H2(g)
Aluminum Chemical Properties • Hydrated ions [Al(OH2)6]3+(aq) + H2O(l) [Al(OH2)5(OH)]2+(aq) + H3O+(aq) [Al(OH2)5(OH)]2+(aq) + H2O(l) [Al(OH2)4(OH)2] +(aq) + H3O+(aq) Aluminum chlorhydrate free
Aluminum Chemical Properties • Formation of hydroxides [Al(OH2)6]3+(aq) + 3OH-(aq) Al(OH)3(s) + 6H2O(l) Al(OH)3(s) + OH-(aq) [Al(OH)4]-(aq) • Use as an antacid Al(OH)3(s) + 3H+(aq) Al3+(aq) + 3H2O(l)
Aluminum Availability • Most abundant metal in the Earth’s crust • commonly found in clays • aluminum silicates • mixture of sodium, potassium, iron, calcium, magnesium, and aluminum silicates • also found in bauxite • impure hydrated aluminum oxide Fe2Al9Si4O22(OH)2 Staurolite
Extraction History • Henri Sainte-Claire Deville (1818-1881) • first to produce aluminum in 1854 AlCl3(s) + 3Na(s) Al(s) + 3NaCl(s) • produced approximately 2 tons annually • price dropped 90% over 10 years
Extraction History • Hall-Héroult Process (1886) P. Héroult C.M. Hall
Hall-Héroult Process • Purification of bauxite • digesting with caustic soda Al2O3(s) + 2OH-(aq) + 3H2O(l) 2[Al(OH)4]-(aq) • insoluble Fe2O3 is filtered off as “red mud”
Hall-Héroult Process • With cooling, hydrated aluminum oxide precipitates 2[Al(OH)4]-(aq) Al2O3·3H2O(s) + 2OH-(aq) • The hydrate is heated to give the anhydrous aluminum oxide Al2O3·3H2O(s) + heat Al2O3(s) + 3H2O(g)
Hall-Héroult Process • Synthesis of cryolite (Na3AlF6) 3SiF4(g) + 2H2O(l) 2H2SiF6(aq) + SiO2(s) H2SiF6(aq) + 6NH3(aq) + 2H2O(l) 6NH4F(aq) + SiO2(s) 6NH4F(aq) + Na[Al(OH)4](aq) + 2NaOH(aq) Na3AlF6(s) + 6NH3(aq) + 6H2O(l)
Hall-Héroult Process • Electrolysis of a cryolite-Al2O3 solution 2Al3+(cryolite) + 6e- 2Al(l) 3O2-(cryolite) + 3C(s) 3CO(g) + 6e-
Hall-Héroult Process • Four major by-products • red mud • NaOH solution is neutralized • Fe2O3 is used to extract pure iron • hydrogen fluoride gas Al2O3(s) + 6HF(g) 2AlF3(s) + 3H2O(g) • aluminum fluoride is then dissolved in cryolite
Hall-Héroult Process • Four major by-products • carbon monoxide 2CO(g) + O2(g) 2CO2(g) + energy • burn with O2 to provide energy for powering the plant • fluorocarbons • 1 kg CF4 and 0.1 kg C2F6 produced for every 1 ton of Al
Hall-Héroult Process • Four major by-products • Fluorocarbons • fluorosilicic acid (H2SiF6) • fluoridation of water supplies SiF62-(aq) + 8H2O(l) H4SiO4(aq) + 4H3O+(aq) + 6F-(aq)
Aluminum Producers • Major producers
Aluminum Uses • 25% in the construction industry • lightweight materials • 18% in the transportation industry • lower fuel consumption • 17% in the containers and packaging industry • soda cans • 14% in the power line industry
Aluminum Recycling • Uses less energy than the extraction of aluminum • melt in a smelter
Aluminum Halides • AlF3 • ionic (octahedral) • melts at 1290ºC • AlCl3 • ionic character in the solid phase (hydrated octahedral) • covalent character in the liquid phase (dimer)