150 likes | 279 Views
Heat transfer experiments. 150 mL. T f. q = C x T x mass. 50 mL 100 o. 100 mL 25 o. q 1 =. (4.184 J/ o C g). x (T f - 100). x (50 g). q 2 = (4.184 J/ o C g) x. (T f - 25) x. (100 g). q 1 = - q 2. (T f - 100) x (50) =. -. (T f - 25) x (100). T f = 50 o C.
E N D
Heat transfer experiments 150 mL Tf q = C x T x mass 50 mL 100o 100 mL 25o q1 = (4.184 J/oC g) x (Tf - 100) x (50 g) q2 = (4.184 J/oC g) x (Tf - 25) x (100 g) q1 = - q2 (Tf - 100) x (50) = - (Tf - 25) x (100) Tf = 50o C
Enthalpy of reaction Hrxn= qrxn coffee cup calorimeter 10.5 g KBr in 125g water at 24o KBr(s) K+ (aq) + Br-(aq) Tf = 21o Calculate Hrxn qsystem = - qsurroundings = Hrxn
Hrxn qsystem = - qsurroundings = Hrxn T x mass qsurroundings = C x (4.184 J/goC) (21 - 24oC) (10.5 g + 125 g) qsurroundings = = -1756 J = +1756 J = Hrxn qsystem = - qsurroundings H is extensive a) endothermic b) exothermic Hrxn = 1756 J = 167 J/g = 19873 J/mol 10.5 g KBr
E = q + w E = q - PV At constant V, E = qv Bomb calorimeter qrxn = qsystem = -qcalorimeter T (oC) qcalorimeter = C (J / oC) x
Constant Volume calorimetry 2Fe (s) + 3/2 O2 (g) Fe2O3 (s) 11.2 g Fe(s), 1 atm O2 Ccalorimeter = 2.58 kJ/oC Tcalorimeter = + 31.9 oC -qcalorimeter qrxn = = Erxn = - (2.58 kJ/oC) (31.9oC) Erxn / 0.1 mol Fe2O3 = - 82.2 kJ = - 822 kJ/mol Fe2O3
Thermitereaction Al2O3(s) + 2Fe(l) 2Al(s) +Fe2O3(s) H is an Exothermic extensive, State function Hess’ Law
2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) 2Al(s) + 3/2 O2(g) Al2O3(s) H = -1676 kJ/mol _______________________________ __________ Fe2O3(s) 2Fe(s) + 3/2 O2(g) 2 Fe(s) + 3/2 O2(g) Fe2O3(s) H= - 822 kJ/mol + Al2O3(s) + 2Fe(s) -854 kJ/mol 2Al(s) + Fe2O3(s) 2 ( ) +15 kJ/mol 2 2 Fe(s) Fe(l) _______________________________ __________ 2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) Hrxn = -824 kJ/mol
Hess’ Law • Always end up with exactly the same reactants and products • If you reverse a reaction, reverse the sign of H • If you change the stoichiometry, change H
Heats of formation, Hof H = heat lost or gained by a reaction “o” = standard conditions: all solutes 1M all gases 1 atm “f” = formation reaction: 1mol product from elements in standard states for elements in standard states, Hof= 0
2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) products reactants elements Hof 2 Al(s) Al2O3(s) 2 Al(s) 2 Fe(s) Fe2O3 2 Fe (l) 3/2 O2(g) Hof Al2O3(s) + 2 HofFe (l) Al(s) Fe2O3
2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) products reactants elements Hof 2 Al(s) Al2O3(s) 2 Al(s) 2 Fe(s) Fe2O3 2 Fe (l) 3/2 O2(g) Hof Al2O3(s) + 2 HofFe (l) - Hof - Hof Fe2O3 Al(s) - Hrxn = nHofproducts nHofreactants
2Al(s) +Fe2O3(s) Al2O3(s) + 2Fe(l) - nHofreactants Hrxn = nHofproducts [HofAl2O3(s) + 2 HofFe(l)] Hrxn= - [HofFe2O3(s) + HofAl(s)] 2 [(-1676) + (15)] 2 - [(-822) + 0]kJ Hrxn = = -824 kJ
Bond Energies chemical reactions = bond breakage and bond formation bond energies positive energy required to break bond bond breakage a) endothermic b) exothermic (raise P.E.) bond formation exothermic (lower P.E.)
Bond energies CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g) Hrxn= bonds broken C-H 413 kJ O=O 495 kJ C=O 799 kJ O-H 467 kJ - bonds formed Hrxn= 4 [ (C-H) + (O=O)] 2 - [ (C=O) 2 + (O-H)] 4 = -824 kJ Hrxn= Hof products - Hof reactants =- 802 kJ
qv v.s. qp qp = H qv = E H = E + PV = E + nRT H = E + PV if n = 0 H = E 2Fe (s) + 3/2 O2 (g) Fe2O3 (s) n = (0 - 3/2) = - 3/2 H = (- 3/2)(8.314 x 10-3 kJ)(298) - 822 kJ/mol + H = -826 kJ/mol