330 likes | 405 Views
금융수학 v.s. 금융공학. 카이스트 수리과학과 강완모. Risk and Return. 금융공학적 접근 가능한 적은 Risk 를 가지고 가능한 많은 Return 을 얻고자 함 금융수학적 접근 Riskless (Risk-free) Return. Portfolio Optimization. maximize Return under a control of Risk minimize Risk under a guarantee of some Return. What measures of Risk?.
E N D
금융수학 v.s. 금융공학 카이스트 수리과학과 강완모 KAIST-IE
Risk and Return • 금융공학적 접근 • 가능한 적은 Risk를 가지고 가능한 많은 Return을 얻고자 함 • 금융수학적 접근 • Riskless (Risk-free) Return KAIST-IE
Portfolio Optimization • maximize Return under a control of Risk • minimize Risk under a guarantee of some Return KAIST-IE
What measures of Risk? • Standard Deviation, Variance • VaR (Value at Risk), Shortfall • Coherent Risk Measure KAIST-IE
Portfolio Optimization • Max s.t. KAIST-IE
이항모형 • Binomial Asset-Pricing Model 확률변수 분포 Q: 0과 1사이의 시간 간격은? Q: 와 의 관계는? KAIST-IE
이항모형 • Binomial Asset-Pricing Model Risky Asset Risk-free Asset KAIST-IE
이항모형 • Binomial Asset-Pricing Model Risky Asset Risk-free Asset KAIST-IE
How to make Money 싸게 사서 비싸게 판다 At time 0: 1.Short of bank account 2.Long one share of stock At time 1: 3.Take at least of without any RISK ARBITRAGE!!! KAIST-IE
It’s simple 싸게 사서 비싸게 판다 At time 0: 1.Short one share of stock 2.Long of bank account At time 1: 3.Take at least of without any RISK KAIST-IE
No Way!!! At time 0: At time 1: NO RISKLESS RETURN if KAIST-IE
새로운 금융상품 KAIST-IE
확대된 금융시장 + KAIST-IE
만약에… = = = KAIST-IE
만약에… = + = + = + KAIST-IE
선형대수학? Return on T Return on H KAIST-IE
뺄셈… = + = + - KAIST-IE
대입… = + KAIST-IE
대입… = + KAIST-IE
정리하면… KAIST-IE
Risk-Neutral Probability Q KAIST-IE
Risk-Neutral Probability Q V.S. KAIST-IE
Complete Market Return on T Return on H KAIST-IE
Complete Market Return on T Return on H KAIST-IE
Incomplete Market ??? Return on T Return on M Return on H KAIST-IE
No Arbitrage in Multi-states • Farkas’ lemma If is a matrix and , then exactly one of the following alternatives holds • There is a non-negative solution of . • The inequalities and have a solution . KAIST-IE
Too Simple? KAIST-IE
Harrison and Pliska • Martingales and Stochastic integrals in the theory of continuous trading • Michael Harrison: Stanford OR Ph.D. • Stanley Pliska: Stanford OR Ph.D. • Approximating queuing system using Brownian motion. KAIST-IE
Want to be a Financial Engineer? KAIST-IE
Want to be a Financial Engineer? KAIST-IE