1 / 11

CIRCULAR STATISTICS

CIRCULAR STATISTICS. Circular statistics are used to quantify the time of occurrence of hydrologic variables on a circle—typically on a yearly basis. Successive samples of circular statistic results The math :( Really comprehensive analysis. Circular Statistics — see BOX 4-3.

dagan
Download Presentation

CIRCULAR STATISTICS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CIRCULAR STATISTICS Circular statistics are used to quantify the time of occurrence of hydrologic variables on a circle—typically on a yearly basis. • Successive samples of circular statistic results • The math :( • Really comprehensive analysis

  2. Circular Statistics—see BOX 4-3 Circular statistics are used to quantify the time of occurrence of hydrologic variables on a circle—typically on a yearly basis. Two values require calculation: Average Time of Occurrence (Angle of the Mean) - analogous to the arithmetic mean Index of Seasonality - analogous to the standard deviation The average hydrologic quantity (say a monthly value) is considered to be a vector quantity. Length is proportional to the amount and direction (angle) of the time of the value.

  3. Circular Statistics • Average Time of Occurrence (Angle of the Mean) • Time through the year (or other interval) is represented on a circle with (usually) each month assigned an angle. Think of the sin/cos terms as weight factors. • Resultant Angle Prime: fR’ = atan(S/C) • Resultant Angle (deal with quadrant):fR = fR’ if(S > 0 and C > 0)fR = fR’+180 if(C < 0)fR = fR’+360 if(S < 0 and C > 0) But other conversions are sometimes needed depending upon the output of the atan function.

  4. Circular Statistics • Resultant Angle (deal with quadrant):$PHI = ( ($Sterm > 0 and $Cterm > 0) or • ($Sterm > 0 and $Cterm < 0) ) ? $PHIp : $PHIp+360;fR = fR’ fR = fR’+360 if[(S > 0 and C > 0) or (S < 0 and C < 0)] • 2. Index of Seasonality (IS) PR = sqrt(S2 + C2) IS = PR / (Total of Xm Values) In the Perl language

  5. Circular Statistics List of examples of hydrologic variables on which circular statistics would be useful: Example: Total Rainfall = 36 inches-------------------------------------------------Season Rainfall sin cos-------------------------------------------------Spring (Mar.31;DoY=90) 4.00 0.9998 0.0215Summer(Jun.30;DoY=181) 16.00 .0258 -.9997Fall (Sept.30;DoY=273) 11.00 -.9999 -.0129Winter(Dec.31;DoY=365) 5.00 .0000 1.0000-------------------------------------------------S = -6.587; C = -11.05; f’=atan(S/C)=> 30.8 degreesf = 30.8 + 180 = 211 degreesPR = 12.87; IS = 12.87/36 = 0.357

  6. Circular Statistics for 08155500 Barton Springs at Austin, Texas • 1978 to 2003 • Vector lengths are short • No definitive angle • Are these observations consistent with your expectation?

  7. Circular Statistics for 08158000 Colorado River at Austin, Texas • 1899 to 2003 • Vector lengths are moderately long. • Concentration of angle near end of September to (through?) November. • Are these observations consistent with your expectation?

  8. Circular Statistics for 08169000 Comal River at NewBraunfels, Texas • 1933 to 2002 • Vector lengths are short • No definitive angle--but perhaps more in January through March?

  9. Circular Statistics for 08169000 Comal River at NewBraunfels, Texas

  10. Circular Statistics for 08169000 Comal River at NewBraunfels, Texas

  11. ExtensiveCircularStatistics

More Related