1 / 54

A. Nepomuk Otte MPI für Physik, Munich / Humboldt Universität, Berlin

The Geiger-APD a novel photon detector and its application in astrophysics experiments and positron emission tomography. A. Nepomuk Otte MPI für Physik, Munich / Humboldt Universität, Berlin. Outline. why new photon detectors for experiments in astroparticle physics

dakota
Download Presentation

A. Nepomuk Otte MPI für Physik, Munich / Humboldt Universität, Berlin

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Geiger-APDa novel photon detector and its application in astrophysics experiments and positron emission tomography A. Nepomuk Otte MPI für Physik, Munich / Humboldt Universität, Berlin

  2. Outline • why new photon detectors for experiments in astroparticle physics • the G-APD and some of its characteristics • application of G-APD in: • positron emission tomography (PET) • air Cherenkov telescopes Max-Planck-Institut für Physik / Humboldt Universität Berlin

  3. Many future experiments will use >> 100,000 photon detectors Requirements to be fulfilled by the photon detector candidate: • robust and stable • easy to calibrate • blue sensitive • low cost (+ low peripheral costs) • compact • low power consumption • … • highest possible photon detection efficiency Astroparticle experiments that will use this photon detector Max-Planck-Institut für Physik / Humboldt Universität Berlin

  4. Cosmic Ray Physics from Space • Highest energy cosmic rays > 1020 eV • GZK mechanism • sources of CR • … http://www.euso-mission.org/ Max-Planck-Institut für Physik / Humboldt Universität Berlin

  5. Ground based Gamma Ray Astrophysics Gamma Ray induces electromagnetic cascade relativistic particle shower in atmosphere Cherenkov light fast light flash (nanoseconds) 100 photons per m² (1 TeV Gamma Ray) MAGIC: world largest air Cherenkov telescope http://wwwmagic.mppmu.mpg.de/ Max-Planck-Institut für Physik / Humboldt Universität Berlin

  6. VHE gamma-ray sources: status ICRC 2007 71 known sources factor of 6 increase within 4 years very successful above 100GeV Rowell Max-Planck-Institut für Physik / Humboldt Universität Berlin

  7. pushing to lower energies entering an unexplored energy window between 10 GeV and 100 GeV • extragalactic background light studies • gamma ray bursts • dark matter • tests of quantum gravity • pulsars • … requires: • larger light collectors • high efficiency photon detectors currently used: classical photomultiplier tubes with ~20% QE Max-Planck-Institut für Physik / Humboldt Universität Berlin

  8. The G-APD a promising photon detector concept invented in Russia in the 80’s advantages • sensors with ~60% efficiency become available • internal gain ~105 -106 • compact and robust • … disadvantages • small sizes (<5x5mm²) • optical crosstalk (10%) • high dark count rate (~MHz) • … P. Buzhan et al. http://www.slac-stanford.edu/pubs/icfa/fall01.html Otte et al., IEEE TNS. 53 (2006) 636. SNIC-2006-0018, Apr 2006 Max-Planck-Institut für Physik / Humboldt Universität Berlin

  9. 3x3 mm² G-APD Max-Planck-Institut für Physik / Humboldt Universität Berlin

  10. A look into basic operations of semiconductor photon detectors with internal amplification Max-Planck-Institut für Physik / Humboldt Universität Berlin

  11. Working modes of avalanche photodiodes Geiger Mode Linear/Proportional Mode • Bias: (10%-20%) ABOVE breakdown voltage • Geiger-mode: it’s a BINARY device!! • Count rate limited • Gain: “infinite”!! • Bias: slightly BELOW breakdown • Linear-mode: it’s an AMPLIFIER • Gain: limited < 300 (1000) • High temperature/bias dependence • No single photo electron resolution Max-Planck-Institut für Physik / Humboldt Universität Berlin

  12. Advantages of APDs in Geiger ModeorSingle Photon Avalanche Diodes (SPADs) • Large standardized output signal • high immunity against pickup • High sensitivity for single photons • Excellent timing even for single photo electrons (<<1ns) • Good temperature stability • Low sensitivity to bias voltage drifts • Devices operate in general < 100 V • Complete insensitive to magnetic fields • No nuclear counter effect (due to standardized output) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  13. The principal disadvantage for many applications: It is a binary device One knows: There was at least one electron/hole initiating the breakdown but not how many of them solved in the G-APD concept Max-Planck-Institut für Physik / Humboldt Universität Berlin

  14. Basic unit in a G-APD is a Single Photon Avalanche Diode (SPAD) Breakdown in SPAD is quenched by individual polysilicon resistor (passive quenching) from B. Dolgoshein (ICFA 2001) http://www.slac.stanford.edu/pubs/icfa/ Max-Planck-Institut für Physik / Humboldt Universität Berlin

  15. Bias and Output 1mm 30µm The G-APD typically 100…2000 small SPADs / mm² All SPADs connected in parallel Only one common signal line SPAD quenching resistor small signal replacement circuit Max-Planck-Institut für Physik / Humboldt Universität Berlin

  16. SiPM output is the analog sum of all SPADs Well defined output signal per SPAD  multi pixel resolution Max-Planck-Institut für Physik / Humboldt Universität Berlin

  17. working range from B. Dolgoshein Light06 Dynamic Range Dynamic range naturally limited by number of available SPADs working condition: Number of photo electrons < SPAD cells From probability considerations:  20% deviation from linearity if 50% of cells respond Max-Planck-Institut für Physik / Humboldt Universität Berlin

  18. Photon Detection Efficiency (PDE)orEffective Quantum Efficiency Most important parameter of a photon detector!! limiting factors: • Intrinsic quantum efficiency • Fraction of sensitive area (20% - 80%) • Surface reflection losses • Probability for Geiger breakdown • (depends on electric field) • SPAD recovery time (passive quenching) • Active volume / absorption length W.Oldham, P.Samuelson, P.Antognetti, IEEE Trans. ED (1972) In total: Currently claimed best PDE values are ~60% Max-Planck-Institut für Physik / Humboldt Universität Berlin

  19. Measurement of the Photon Detection Efficiency PDE measurements are not an easy task • optical crosstalk • dependency on bias voltage often a photomultiplier with unknown photoelectron collection efficiency is used as reference  Overestimation of the PDE Max-Planck-Institut für Physik / Humboldt Universität Berlin

  20. A method to measure the PDE use calibrated PiN-diode as reference use integrating sphere with two exit ports (splitting ratio of several thousand) flash PiN-diode and G-APD with pulsed monochromatic light source Otte et al., NIM A 567 360–363, 2006 Max-Planck-Institut für Physik / Humboldt Universität Berlin

  21. Problems: Optical Crosstalk High Dark Count Rate Max-Planck-Institut für Physik / Humboldt Universität Berlin

  22. Optical Crosstalk • SPADs not only detect photons • they also emit photons during • breakdown Emission microscopy picture of a prototype SiPM Max-Planck-Institut für Physik / Humboldt Universität Berlin

  23. Photons can trigger additional cells Sketch from Cova et al. NIST 2003 Workshop on single photon detectors •  Optical crosstalk • Artificial increase in signal • Excess Noise Factor of SiPM can be quite significant Max-Planck-Institut für Physik / Humboldt Universität Berlin

  24. Using optical crosstalk to learn more about the photons emitted in avalanches Max-Planck-Institut für Physik / Humboldt Universität Berlin

  25. Light Emission in Avalanches W. J. Kindt • measured spectra do not show similar behavior • emission mechanisms not well known • very few absolute measurements Max-Planck-Institut für Physik / Humboldt Universität Berlin

  26. optical crosstalk spectrum from dark noise Try to reproduce this distribution with Monte Carlo simulations Max-Planck-Institut für Physik / Humboldt Universität Berlin

  27. SiSi: The SiPM Simulator *Elisabeth ”Sisi” von Wittelsbach was the empress consort of Emperor Franz Joseph of Austria. She was born 1837 in Munich, Bavaria and murdered 1898 in Geneva, Switzerland Max-Planck-Institut für Physik / Humboldt Universität Berlin

  28. SiSi SiSi is an “almost” complete simulator of a SiPM • simulation of avalanche photons: • black body radiation with free parameters: • temperature • intensity • isotropic emission photoelectrons in non-depleted bulk are subject to simple diffusion model; lifetime of electrons is a free parameter Max-Planck-Institut für Physik / Humboldt Universität Berlin

  29. Example of a good match residuals Residuals can be explained by dark counts which are not simulated in SiSi no unique set of model parameters (Temperature and Intensity of photon spectrum) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  30. Characteristics of Photons that cause Optical Crosstalk 2 photon spectra that reproduce the measured crosstalk distributions Crosstalk is only caused by photons within a narrow range of energies FWHM: ~0.2 eV Peak: ~1.26eV energy distribution of photons causing optical crosstalk Intensity (1.15 … 1.40 eV): ~3*10-5 photons / electron (systematic uncertainty of ~2) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  31. Reason for narrow range of photon energies strong dependence of absorption lengths on photon energy not absorbed in G-APD absorption in same cell Max-Planck-Institut für Physik / Humboldt Universität Berlin

  32. Two possible applications for G-APDs: • positron emission tomography (PET) • air Cherenkov telescopes Max-Planck-Institut für Physik / Humboldt Universität Berlin

  33. detectors γ Object containing some quantity of radio-labeled tracer (positron-source) Positron annihilation : two back-to-back 511 keV photons γ The emitted photons are detected by two opposing detectors in coincidence Positron Emission Tomography (PET) Basic principle PET : image distribution of a radio-labeled tracer inside the body Tracer Molecules : Labeled by positron emitting isotopes ( 11C, 13N, 15O, 18F) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  34. The Reconstruction Problem This is... what you are looking for! Max-Planck-Institut für Physik / Humboldt Universität Berlin

  35. G-APDs in PET: the first studies Advantage: very compact, no sophisticated amplifier needed, … • direct coupling of SiPM to crystal • no cooling • Factor 4 area miss match between SiPM and crystal wrapped crystals G-APDs signal readout Otte, et al. NIM A 545 (2005) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  36. G-APDs in PET: the first studies Advantage: very compact, no sophisticated amplifier needed, … • direct coupling of SiPM to crystal • no cooling • Factor 4 area miss match between SiPM and crystal first ever measurement • Energy resolution 22% FWHM • on 22Na coincidence spectrum • Time resolution 1.5 nsec FWHM Things have quite improved since then Otte, et al. NIM A 545 (2005) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  37. Result of measurements with MW-3 (3x3 mm2) Geiger- mode APDs from Dubna (Z. Sadygov) + LYSO crystals (2x2x10 mm3) Energy Resolution: 12% FWHM Time Resolution: 540ps (limited by crystal) MRS diode used Alexey Stoykov, Dieter Renker (PSI) (2006) Max-Planck-Institut für Physik / Humboldt Universität Berlin

  38. Gamma ray • Cherenkov light image of particle shower in telescope camera • fast light flash (nanoseconds) • 100 photons per m² (1 TeV Gamma Ray) Particle shower ~ 10 km ~ 1o Cherenkov light reconstruct: arrival direction, energy reject hadron background ~ 120 m Imaging Air Cherenkov Technique Max-Planck-Institut für Physik / Humboldt Universität Berlin

  39. Figure of Merit Cherenkov spectrum folded with photon detector response Cherenkov spectrum on ground photon detector response Max-Planck-Institut für Physik / Humboldt Universität Berlin

  40. Application of G-APDs in air Cherenkov telescopes Figure of Merit Cherenkov spectrum folded with photondetector response MPPC from Hamamatsu with highest PDE (from data sheet MPPC with 100x100 µm² cells) photomultiplier tubes can hope for factor >2 increase in sensitivity compared to bialkali PMTs Max-Planck-Institut für Physik / Humboldt Universität Berlin

  41. Test on La Palma with MAGIC 4 MPPC-33-050C from Hamamatsu: sensor size: 3x3mm² single cell size: 50x50µm² nominal bias: 70.4V dark rate at nominal bias: ~2MHz gain at nominal bias: 7.5*105 crosstalk at nominal bias: 10% MAGIC Pixel Size Array of 4 MPPCs: light catchers with factor 4 concentration; 6x6mm² onto 3x3mm² peak photon detection efficiency 55% needs to be confirmed Max-Planck-Institut für Physik / Humboldt Universität Berlin

  42. array mounted next to the MAGIC camera for 3 nights for fine tuning and tests G-APDs signals recorded by the MAGIC DAQ with each trigger • array not removed or protected during day • it was raining for one day! Max-Planck-Institut für Physik / Humboldt Universität Berlin

  43. Array mounted onto the MAGIC camera entrance window for two nights Max-Planck-Institut für Physik / Humboldt Universität Berlin

  44. Light recorded from Calibration Runs Pedestal 1 phe UV-LEDs 375nm single phe-resolution degraded because of light from night sky 2 phe 3phe … easy calibration  reduced systematics some recorded showers  Max-Planck-Institut für Physik / Humboldt Universität Berlin

  45. location of MPPC array 2 phe 1 phe 4 phe 1 phe MPPCs 35 phe 70 phe 15 phe 35 phe PMTs Max-Planck-Institut für Physik / Humboldt Universität Berlin

  46. Max-Planck-Institut für Physik / Humboldt Universität Berlin

  47. Max-Planck-Institut für Physik / Humboldt Universität Berlin

  48. Shower Signals: MPPC vs PMT event selection: two PMTs next to MPPCs with more than 15 photoelectrons in each tube ~300 events from ~30 min data signals are correlated counts on average MPPC record a larger signal Max-Planck-Institut für Physik / Humboldt Universität Berlin

  49. ratio of signals MPPC/ (scaled) PMT event by event 100% efficiency assumed for the light catcher in front of the MPPCs  on average 1.6 times more light detected with MPPCs (crosstalk corrected) in reality higher due to non perfect light concentrator Max-Planck-Institut für Physik / Humboldt Universität Berlin

  50. Summary The silicon photomultiplier is a real breakthrough in photon detection!! High photon detection efficiency (>60%) Offers high internal amplification (>105) Fast timing (<nsec) Low power consumption (1…100µW/mm²) It can not be damaged by exposure to strong source of light No aging CMOS like technology  prospects for cheap mass production <10$ per mm² … Max-Planck-Institut für Physik / Humboldt Universität Berlin

More Related