1 / 53

G l Ekolojisi

G

dallon
Download Presentation

G l Ekolojisi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Göl Ekolojisi Meryem Beklioglu Limnoloji Laboratuvari, ODTÜ, Biyoloji Bölümü www.limnology.metu.edu.tr meryem@metu.edu.tr

    2. Göller Havzanin en çukur yeridir. Havzanin aynasi gibidir Su bekleme süresi (gün-on yillar) Su bekleme süresi: göl büyüklügü, girdi ve çiktilarin hidrolojik yüküne baglidir

    3. 1. Buzul Gölleri 2. Tektonik göller 3. Heyalan Gölleri 4. Nehir etkinligiyle olusan göller 5. Volkanik göller 6. Karstik göller 7. Insan yapisi göller (Reservorlar) *Göller Bölgesi?

    4. 1.Buzulasma sonucu olusan Göller Kuzey yarim küredeki göllerin çogu Toroslar, Uludag, Kaçkarlardaki göller Sig/derin göller olusabilir

    5. Buzul hareketi sonucu Ontario, CA olusan Kettle gölleri (siyah bölgeler)

    6. 2. Tektonik Göller Dünyanin en eski ve en derin gölleri bu yolla olusmustur Afrika Rift vadisi (Tanganika G.: 1470 m ) Baykal G., Sibirya Beysehir, Egirdir, Hazar Gölleri

    7. 3. Heyelan Gölleri Heyelan sonucu daglardaki vadilerin önünün kapanmasi sonucu olusur Abant Gölü, Yedigöller, Karagöl

    8. 4. Menderes Gölleri Allüyon tasiyan büyük akrsularin menderslerinin oldugu yerde olusur Kizilirmak, Gediz N. Menderslerinde örnekleri vardir

    9. 5. Krater Gölleri Patlamis volkanin konisinde olusur, örg:Nemrut Krateri Patlamis volkandan püsküren lavlar vadiyi tikiyarak olusturu, örg: Van Gölü

    10. 6. Karstik Göller: Obruklar

    11. 7.Insanin olusturdugu göller: Barajlar

    12. uzunlugu (l): 218m Eni (bx):187m Kenar uzunlugu Alan (A): 25,238m2 Kiyi olusumu (DL)

    13. Göl Ekolojisinde Hidrolojik Fiziksel: isik, sicaklik, Kimyasal Biyolojik

    16. Su Seviyesi Degisimi (SSD) Dogal veya Insan kaynakli Faktörler SSD belirlerler Iklim (Yöresel ve Küresel iklim olaylari) Havza Karakteri Morfometri Su Kullanimi: antroponojenik

    19. Göl Ekolojisinde Hidroloji Fiziksel: isik, sicaklik, Kimyasal Biyolojik

    20. Göllerde Isik Profili At the top of this picture you see a typical graph. At the bottom of the picture, you are looking at a “lake” in cross-section. Limnologists tend to graph data differently, so first of all, we need to make sure everyone is familiar with the seemingly strange way limnologists plot lake data that varies with depth. The independent variable, in this case, depth, is plotted vertically, starting with 0 meters at the top of the graph and increasing downward (the opposite of the usual graphing method). It makes sense when you want to visualize how things change as we dive down from the surface. The dependent variables (i.e., the physical, chemical, and biological variables that vary with depth) are plotted horizontally. In this case, the reduction of light with depth is plotted in typical “limnological” fashion, superimposed over the lake cross-section to help you visualize the data. At the top of this picture you see a typical graph. At the bottom of the picture, you are looking at a “lake” in cross-section. Limnologists tend to graph data differently, so first of all, we need to make sure everyone is familiar with the seemingly strange way limnologists plot lake data that varies with depth. The independent variable, in this case, depth, is plotted vertically, starting with 0 meters at the top of the graph and increasing downward (the opposite of the usual graphing method). It makes sense when you want to visualize how things change as we dive down from the surface. The dependent variables (i.e., the physical, chemical, and biological variables that vary with depth) are plotted horizontally. In this case, the reduction of light with depth is plotted in typical “limnological” fashion, superimposed over the lake cross-section to help you visualize the data.

    21. A strong thermocline (shaded rectangle) is now in place. A strong thermocline (shaded rectangle) is now in place.

    23. Göl Ekolojisinde Hidroloji Fiziksel: isik, sicaklik, Kimyasal. Oksijen, Azot, fosfor, silikat Biyolojik

    24. Iki önemli O2 Kaynagi Sources of DO: Turbulent mixing of the atmospheric O2 into surface water via wind energy. 2. Photosynthesis from algae and higher plants Photosynthesis requires light, so it only occurs to the depth that light intensity is about 0.5-1.0% of surface values. 3. Minor sources from river inflows and groundwater. Sources of DO: Turbulent mixing of the atmospheric O2 into surface water via wind energy. 2. Photosynthesis from algae and higher plants Photosynthesis requires light, so it only occurs to the depth that light intensity is about 0.5-1.0% of surface values. 3. Minor sources from river inflows and groundwater.

    25. Su Kimyasi: Oksijen - Oxygen Dikey oksijen yogunlugu verinli/besin tuzunca zengin göllerde asagiya dogru azalir

    26. Göl Su Kimyasi: Besin Tuzu Fosfor Azot Silika Demir karbon

    28. Birincil Üretimi Sinirlayici Besin Tuzlari Fosfor Vazgeçilmezdir Çözünmüs hali toprakda tutulur Anahtar besin tuzu dur Ötrofikasyon kontrolünde önemlidir Azot Vazgeçilmezdir Çözünmüs hali (Nitrat ve amonyun) en önemli kaynaktir Anahtar besin tuzu dur Sudan bakteriler yardimi ile uzaklastirilir Nitrogen may limit algal growth in unproductive lakes, estuaries, and open oceans. Nitrogen CAN contribute to eutrophication in concert with phosphorus enrichment.Nitrogen may limit algal growth in unproductive lakes, estuaries, and open oceans. Nitrogen CAN contribute to eutrophication in concert with phosphorus enrichment.

    29. Sucul üretimde Besin Tuzlarinin miktari sinirlayicidir

    30. Sonuç Sudaki besin tuzu miktari çok farkli etmenlere baglidir Göl Havzasi Fiziksel faktörler Geçmis faktörler (paleolimnoloji) Antropogenik faktörler ötrofikasyon Tarim ve hayvancilik Evsel atiksu Iklim degisimi: isinma kuraklik

    31. Göl Ekolojisinde Hidroloji Fiziksel: isik, sicaklik, Kimyasal. Oksijen, Azot, fosfor, silikat Biyolojik

    32. Biyota Katmanlari: Isik miktari belirler Bitki katmani (littoral) isiklanma bitkilerin büyümesine uygundur Açik su (limnetik) sadece üst kisinlarinda isik müsaittir-planktonlar vardir Alt katman (profundal): isigin ulasmadigi karanlik bölge

    33. Tipik: Su bitkileir (Makrofitler) Suiçi

    35. Tipik Fitoplakton

    36. Tipik Zooplankton

    37. Tipik Dip (Bentik) Canlilar: sinek larvasi

    38. Tipik Baliklar

    40. Göllerde Besin Agi

    41. Göl Besi Aginin Genel Görünümü

    42. Sucul ekosistemlerde Birincil üretim Asagidan Yukariya Kontrol Fiziksel ve kimyasal kosullar ekosistem yapisini belirler Fiziksel ve kimyasal faktörler belirler Yukaridan asagiya kontrol Besin agindaki avci tüketiciler belirler Avci balik .

    47. Arazide Örnek Toplama: Yaz

    48. Kis

    50. How? Fossiller Pigmentler in/organik kimyasallar Kararli/radyo izotopler

    52. Biological proxies Pollens and spores Regional vegetation history Local vegetation history Climate change Changes in lake water quality Changes in aquatic macrophytes Diatoms Acidity Nutrients Salinity

    53. Biological proxies Cont’d Photosynthetic pigments Past changes in algal and bacterial populations (blue-green algae and eutrophication) Chironomids Trophic status of lakes Acidification Climate change

    54. Biological proxies Cont’d Cladocerans Eutrophication Acidification salinity Ostracods Salinity Mg/Sr and Mg/Ca Water level Temperature (18O/16O)

More Related