1 / 47

Nucleic Acids: RNA and chemistry

Nucleic Acids: RNA and chemistry. Andy Howard Introductory Biochemistry 13 October 2009. RNA: structure & types mRNA tRNA rRNA Small RNAs. DNA & RNA Hydrolysis alkaline RNA, DNA nucleases Restriction enzymes DNA & RNA dynamics and density measurements. What we’ll discuss.

damara
Download Presentation

Nucleic Acids: RNA and chemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nucleic Acids:RNA and chemistry Andy HowardIntroductory Biochemistry13 October 2009 Biochemistry:Nucleic Acids II

  2. RNA: structure & types mRNA tRNA rRNA Small RNAs DNA & RNA Hydrolysis alkaline RNA, DNA nucleases Restriction enzymes DNA & RNA dynamics and density measurements What we’ll discuss Biochemistry:Nucleic Acids II

  3. Ribonucleic acid • We’re done with DNA for the moment. • Let’s discuss RNA. • RNA is generally, but not always, single-stranded • The regions where localized base-pairing occurs (local double-stranded regions) often are of functional significance Biochemistry:Nucleic Acids II

  4. RNA physics & chemistry • RNA molecules vary widely in size, from a few bases in length up to 10000s of bases • There are several types of RNA found in cells Type % %turn- Size, Partly Role RNA over bases DS? mRNA 3 25 50-104 no protein template tRNA 15 21 55-90 yes aa activation rRNA 80 50 102-104 no transl. catalysis & scaffolding sRNA 2 4 30-103 ? various Biochemistry:Nucleic Acids II

  5. Messenger RNA • mRNA: transcription vehicleDNA 5’-dAdCdCdGdTdAdTdG-3’RNA 3’- U G G C A U A C-5’ • typical protein is ~500 amino acids;3 mRNA bases/aa: 1500 bases (after splicing) • Additional noncoding regions (see later) brings it up to ~4000 bases = 4000*300Da/base=1,200,000 Da • Only about 3% of cellular RNA but instable! Biochemistry:Nucleic Acids II

  6. Relative quantities • Note that we said there wasn’t much mRNA around at any given moment • The amount synthesized is much greater because it has a much shorter lifetime than the others • Ribonucleases act more avidly on it • We need a mechanism for eliminating it because the cell wants to control concentrations of specific proteins Biochemistry:Nucleic Acids II

  7. mRNA processing in Eukaryotes Genomic DNA Unmodified mRNA produced therefrom • # bases (unmodified mRNA) = # base-pairs of DNA in the gene…because that’s how transcription works • BUT the number of bases in the unmodified mRNA > # bases in the final mRNA that actually codes for a protein • SO there needs to be a process for getting rid of the unwanted bases in the mRNA: that’s what splicing is! Biochemistry:Nucleic Acids II

  8. Splicing: quick summary Genomic DNA transcription Unmodified mRNA produced therefrom exon intron exon intron exon intron • Typically the initial eukaryotic message contains roughly twice as many bases as the final processed message • Spliceosome is the nuclear machine (snRNAs + protein) in which the introns are removed and the exons are spliced together splicing exon exon exon translation (Mature transcript) Biochemistry:Nucleic Acids II

  9. Heterogeneity via spliceosomal flexibility • Specific RNA sequences in the initial mRNA signal where to start and stop each intron, but with some flexibility • That flexibility enables a single gene to code for multiple mature RNAs and therefore multiple proteins Biochemistry:Nucleic Acids II

  10. Transfer RNA • tRNA: tool for engineering protein synthesis at the ribosome • Each type of amino acid has its own tRNA, responsible for positioning the correct aa into the growing protein • Roughly T-shaped or Y-shaped molecules; generally 55-90 bases long • 15% of cellular RNA Phe tRNAPDB 1EVV76 basesyeast Biochemistry:Nucleic Acids II

  11. Secondary and Tertiary Structure of tRNA • Extensive H-bonding creates four double helical domains, three capped by loops, one by a stem • Only one tRNA structure (alone) is known • Phenylalanine tRNA is "L-shaped" • Many non-canonical base pairs found in tRNA Biochemistry:Nucleic Acids II

  12. tRNA structure: overview Biochemistry:Nucleic Acids II

  13. Amino acid linkage to acceptor stem Amino acids are linked to the 3'-OH end of tRNA molecules by an ester bond formed between the carboxyl group of the amino acid and the 3'-OH of the terminal ribose of the tRNA. Biochemistry:Nucleic Acids II

  14. Yeast ala-tRNA • Note nonstandard bases and cloverleaf structure Biochemistry:Nucleic Acids II

  15. Ribosomal RNA • rRNA: catalyic and scaffolding functions within the ribosome • Responsible for ligation of new amino acid (carried by tRNA) onto growing protein chain • Can be large: mostly 500-3000 bases • a few are smaller (150 bases) • Very abundant: 80% of cellular RNA • Relatively slow turnover 23S rRNAPDB 1FFZ602 basesHaloarcula marismortui Biochemistry:Nucleic Acids II

  16. Ribosomal composition (fig.10.22) • Bacterial ribosome • 30S subunit: 16S RNA + 21 proteins • 50S subunit:23S RNA + 5S RNA + 31 proteins • Eukaryotic ribosome • 40S subunit: 18S RNA + 33 proteins • 60S subunit:(28S+5.85S) RNA, 5S RNA + 49 proteins Biochemistry:Nucleic Acids II

  17. Small RNA • sRNA: few bases / molecule • often found in nucleus; thus it’s often called small nuclear RNA, snRNA • Involved in various functions, including processing of mRNA in the spliceosome • Some are catalytic • Typically 20-1000 bases • Not terribly plentiful: ~2 % of total RNA Protein Prp31complexed to U4 snRNAPDB 2OZB33 bases + 85kDa heterotetramerHuman Biochemistry:Nucleic Acids II

  18. siRNAs and gene silencing • Small interfering RNAs block specific protein production by base-pairing to complementary seqs of mRNA to form dsRNA • DS regions get degraded & removed • This is a form of gene silencing or RNA interference • RNAi also changes chromatin structure and has long-range influences on expression Viral p19 protein complexed to human 19-base siRNA PDB 1R9F1.95Å 17kDa protein Biochemistry:Nucleic Acids II

  19. Other small RNAs • 21-28 nucleotides • Target RNA or DNA through complementary base-pairing • Several types, based on function: • Small interfering RNAs (q.v.) • microRNA: control developmental timing • Small nucleolar RNA: catalysts that (among other things) create the oddball bases snoRNA77courtesy Wikipedia Biochemistry:Nucleic Acids II

  20. How many varieties of each class? • mRNA: thousands(one per protein transcript) • tRNA: one per codon plus a few more • rRNA: a few per organism—see rRNA slide • sRNA: dozens (?) Biochemistry:Nucleic Acids II

  21. Unusual bases in RNA • mRNA, sRNA mostly ACGU • rRNA, tRNA have some odd ones Biochemistry:Nucleic Acids II

  22. iClicker quiz • 1. Shown is the lactim form of which nucleic acid base? • Uracil • Guanine • Adenine • Thymine • None of the above Biochemistry:Nucleic Acids II

  23. iClicker quiz #2 • Suppose someone reports that he has characterized the genomic DNA of an organism as having 29% A and 22% T. How would you respond? • (a) That’s a reasonable result • (b) This result is unlikely because [A] ~ [T] in duplex DNA • (c) That’s plausible if it’s a bacterium, but not if it’s a eukaryote • (d) none of the above Biochemistry:Nucleic Acids II

  24. Do the differences between RNA and DNA matter? Yes! • DNA has deoxythymidine, RNA has uridine: • cytidine spontaneously degrades to uridine • dC spontaneously degrades to dU • The only dU found in DNA is there because of degradation: dT goes with dA • So when a cell finds dU in its DNA, it knows it should replace it with dC or else synthesize dG opposite the dU instead of dA Biochemistry:Nucleic Acids II

  25. Ribose vs. deoxyribose • Presence of -OH on 2’ position makes the 3’ position in RNA more susceptible to nonenzymatic cleavage than the 3’ in DNA • The ribose vs. deoxyribose distinction also influences enzymatic degradation of nucleic acids • I can carry DNA in my shirt pocket, but not RNA Biochemistry:Nucleic Acids II

  26. Backbone hydrolysis of nucleic acids in base(fig. 10.29) • Nonenzymatic hydrolysis in base occurs with RNA but not DNA, as just mentioned • Reason: in base, RNA can form a specific 5-membered cyclic structure involving both 3’ and 2’ oxygens • When this reopens, the backbone is cleaved and you’re left with a mixture of 2’- and 3’-NMPs Biochemistry:Nucleic Acids II

  27. Why alkaline hydrolysis works • Cyclic phosphate intermediate stabilizes cleavage product Biochemistry:Nucleic Acids II

  28. The cyclic intermediate • Hydroxyl or water can attack five-membered P-containing ring on either side and leave the –OP on 2’ or on 3’. Biochemistry:Nucleic Acids II

  29. Consequences • So RNA is considerably less stable compared to DNA, owing to the formation of this cyclic phosphate intermediate • DNA can’t form this because it doesn’t have a 2’ hydroxyl • In fact, deoxyribose has no free hydroxyls! Biochemistry:Nucleic Acids II

  30. Enzymatic cleavage of oligo- and polynucleotides • Enzymes are phosphodiesterases • Could happen on either side of the P • 3’ cleavage is a-site; 5’ is b-site. • Endonucleases cleave somewhere on the interior of an oligo- or polynucleotide • Exonucleases cleave off the terminal nucleotide Biochemistry:Nucleic Acids II

  31. An a-specific exonuclease Biochemistry:Nucleic Acids II

  32. A b-specific exonuclease Biochemistry:Nucleic Acids II

  33. Specificity in nucleases • Some cleave only RNA, others only DNA, some both • Often a preference for a specific base or even a particular 4-8 nucleotide sequence (restriction endonucleases) • These can be used as lab tools, but they evolved for internal reasons Biochemistry:Nucleic Acids II

  34. Enzymatic RNA hydrolysis • Ribonucleases operate through a similar 5-membered ring intermediate: see fig. 19.29 for bovine RNAse A: • His-119 donates proton to 3’-OP • His-12 accepts proton from 2’-OH • Cyclic intermediate forms with cleavage below the phosphate • Ring collapses, His-12 returns proton to 2’-OH, bases restored PDB 1KF813.6 kDa monomer bovine Biochemistry:Nucleic Acids II

  35. Variety of nucleases Biochemistry:Nucleic Acids II

  36. Restriction endonucleases • Evolve in bacteria as antiviral tools • “Restriction” because they restrict the incorporation of foreign DNA into the bacterial chromosome • Recognize and bind to specific palindromic DNA sequences and cleave them • Self-cleavage avoided by methylation • Types I, II, III: II is most important • I and III have inherent methylase activity; II has methylase activity in an attendant enzyme Biochemistry:Nucleic Acids II

  37. What do we mean by palindromic? • In ordinary language, it means a phrase that reads the same forward and back: • Madam, I’m Adam. (Genesis 3:20) • Eve, man, am Eve. • Sex at noon taxes. • Able was I ere I saw Elba. (Napoleon) • A man, a plan, a canal: Panama! (T. Roosevelt) • With DNA it means the double-stranded sequence is identical on both strands Biochemistry:Nucleic Acids II

  38. Quirky math question to ponder • Numbers can be palindromic:484, 1331, 727, 595… • Some numbers that are palindromic have squares that are palindromic…222 = 484, 1212 = 14641, . . . • Question: if a number is perfect square and a palindrome, is its square root a palindrome? (answer will be given orally) Biochemistry:Nucleic Acids II

  39. Palindromic DNA • G-A-A-T-T-C • Single strand isn’t symmetric: but the combination with the complementary strand is: • G-A-A-T-T-CC-T-T-A-A-G • These kinds of sequences are the recognition sites for restriction endonucleases. This particular hexanucleotide is the recognition sequence for EcoRI. Biochemistry:Nucleic Acids II

  40. Cleavage by restriction endonucleases • Breaks can be • cohesive (if they’re off-center within the sequence) or • non-cohesive (blunt) (if they’re at the center) • EcoRI leaves staggered 5’-termini: cleaves between initial G and A • PstI cleaves CTGCAG between A and G, so it leaves staggered 3’-termini • BalI cleaves TGGCCA in the middle: blunt! Biochemistry:Nucleic Acids II

  41. iClicker question 3: • 3. Which of the following is a potential restriction site? • (a) ACTTCA • (b) AGCGCT • (c) TGGCCT • (d) AACCGG • (e) none of the above. Biochemistry:Nucleic Acids II

  42. Example for EcoRI • 5’-N-N-N-N-G-A-A-T-T-C-N-N-N-N-3’3’-N-N-N-N-C-T-T-A-A-G-N-N-N-N-5’ • Cleaves G-A on top, A-G on bottom: • 5’-N-N-N-N-GA-A-T-T-C-N-N-N-N-3’3’-N-N-N-N-C-T-T-A-AG-N-N-N-N-5’ • Protruding 5’ ends:5’-N-N-N-N-GA-A-T-T-C-N-N-N-N-3’3’-N-N-N-N-C-T-T-A-AG-N-N-N-N-5’ Biochemistry:Nucleic Acids II

  43. How often? • 4 types of bases • So a recognition site that is 4 bases long will occur once every 44 = 256 bases on either strand, on average • 6-base site: every 46= 4096 bases, which is roughly one gene’s worth Biochemistry:Nucleic Acids II

  44. EcoRI structure • Dimeric structure enables recognition of palindromic sequence •  sandwich in each monomer EcoRI pre-recognition complex PDB 1CL8 57 kDa dimer + DNA Biochemistry:Nucleic Acids II

  45. Methylases HhaI methyltransferasePDB 1SVU2.66Å; 72 kDa dimer • A typical bacterium protects its own DNA against cleavage by its restriction endonucleases by methylating a base in the restriction site • Methylating agent is generally S-adenosylmethionine Structure courtesy steve.gb.com Biochemistry:Nucleic Acids II

  46. The biology problem • How does the bacterium mark its own DNA so that it does replicate its own DNA but not the foreign DNA? • Answer: by methylating specific bases in its DNA prior to replication • Unmethylated DNA from foreign source gets cleaved by restriction endonuclease • Only the methylated DNA survives to be replicated • Most methylations are of A & G,but sometimes C gets it too Biochemistry:Nucleic Acids II

  47. How this works • When an unmethylated specific sequence appears in the DNA, the enzyme cleaves it • When the corresponding methylated sequence appears, it doesn’t get cleaved and remains available for replication • The restriction endonucleases only bind to palindromic sequences Biochemistry:Nucleic Acids II

More Related