220 likes | 346 Views
Hemholtz-Institut für Strahlen- und Kernphysik der Uni Bonn. supported by SFB/TR 16. The Gas Č erenkov Detector for the Crystal-Barrel Experiment at ELSA. D. Kaiser. Nucleon Resonances. Breit-Wigner parametrisation. photoproduction reactions with nucleon resonances at the CB experiment:
E N D
Hemholtz-Institut für Strahlen- und Kernphysik der Uni Bonn supported by SFB/TR 16 The Gas Čerenkov Detector for the Crystal-Barrel Experiment at ELSA D. Kaiser
Nucleon Resonances Breit-Wigner parametrisation • photoproduction reactions with nucleon resonances at the CB experiment: N N* ... • problem: overlapping resonances • partial wave analysis • polarisation observables D. Kaiser
polarisation time [hours] Double Polarisation • polarised target • polarised photonbeam • Bonn Frozen Spin Target • longitudinally polarised protons • in a butanol target • @ 30-50 mK in frozen-spin mode • polarisation 70 – 90% • repolarisation every ~ 60 h • total relaxation time ~ 360 h • linear polarised photon beam by use of • unpolarised electron beam and diamond radiator • 50% @ 3.2 GeV • circular polarised photon beam by use of • longitudinally polarised electron beam and amorphous radiator • 55% @ 2.4 GeV D. Kaiser
Electron Accelerator ELSA D. Kaiser
Crystal-Barrel Experiment e- beam Gas Čerenkov detector goniometer tagger polarised target g camera Crystal-Barrel detector MiniTAPS e- beam dump GIM D. Kaiser
Electromagnetic Background • due to: • pair production • Compton scattering for hydrogen target in full angular acceptance: ~1.000 e± 1 hadr. for butanol target under forward angles: ~100.000 e± 1 hadr. need for supression already on trigger level D. Kaiser
Čerenkov Effect • discovered 1934 by P.A. Čerenkov (and S.I. Vavilov) • Nobelprice 1958, together with I.E. Tamm and I.M. Frank • charged particles with high velocity generate electromagnetic radiation in dielectric media D. Kaiser
Čerenkov Effect observable radiation for a particular angle c: with threshold for Čerenkov radiation: D. Kaiser
Čerenkov Effect • threshold energy “adjustable“ by use of different Č media • useful for particle discrimination and determination • simple set-up with Č medium and photon detector Čerenkov threshold detector • other set-ups possible (e.g. RICH) D. Kaiser
Čerenkov Effect • approx.1700 photons/cm in water approx. 2 photons/cm in CO2 range of normal PM Used photomultiplier: Hamamatsu R1584-03SEL D. Kaiser
Gas Čerenkov Detector - drawing and picture D. Kaiser
Gas Čerenkov Detector -positioning andangular space coverage MiniTAPS Gas Čerenkov detector forward crystals D. Kaiser
Gas Čerenkov Detector • periodic repolarisation of the target • easy in- and output of the detector is required D. Kaiser
gas system partial pressure sensor scale Modifications D. Kaiser
Simulation of the Efficiency • verification of the efficiency of the detector maximum efficiency of 99.97 % D. Kaiser
Determination of the Efficiency • done at the old CB area • e± from pair production / Compton scattering on a carbon target efficiency of 99.72 % ± 0.45 % D. Kaiser
Installation in the CB Set-up more adaptions needed: • electronic • trigger logic • DAQ • analysis software ExPlORA D. Kaiser
Use as Veto Detector Start of readout if two tagged hits in the Crystal-Barrel-, Forward- or MiniTAPS detector were found Start of readout if two tagged hits in the Crystal-Barrel-, Forward- or MiniTAPS detector were found, with applied Čerenkov veto D. Kaiser
Use as Veto Detector cut on events correlated in time number of suppressed events in the subdetectors D. Kaiser
Čerenkov Detector as Time Reference D. Kaiser
Čerenkov Detector as Time Reference D. Kaiser
Summary • Gas Čerenkov detector modified for use in the Crystal-Barrel experiment • tests and determination of the efficiency • detector integrated and in use • as veto detector • as time reference • data taking has already started D. Kaiser