1 / 25

Manuel Forcales

Manuel Forcales. ___________________________________________ Group meeting, Feb. 2003 _____________________________________________. OPTICAL MEMORY EFFECT IN Si:Er. _____________________ Van der Waals-Zeeman Institute, University of Amsterdam ________________. &.

damisi
Download Presentation

Manuel Forcales

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Manuel Forcales ___________________________________________Group meeting, Feb. 2003_____________________________________________

  2. OPTICAL MEMORY EFFECT IN Si:Er _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ & Free Electron Laser facility for Infrared eXperiments (FELIX) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  3. Acknowledgements _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Group members from the Van der Waals–Zeeman Institute (WZI): M. A. J. Klik , N.Q. Vinh, Dr. M. Wojdak and Dr. T. Gregorkiewicz FOM Institute “Rijnhuizen” (FEL Facility) staff members: Dr. I. Bradley, Dr. J-P.R. Wells Samples kindly provided by: Dr. A. Polman, AMOLF, The Netherlands Dr. Widdershoven, PRL, The Netherlands Dr. F. Priolo, IMETEM, Italy Dr. W. Jantsch, University of Linz, Austria Dr. J. Michel, MIT, USA Financial support (thank$): ARL-ERO, NWO, FOM ___________________________________________Group meeting, Feb. 2003_____________________________________________

  4. Outline _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________  Motivations  Introduction: data storage/Er3+ excitation  Photoluminescence (PL) experiments  Results  Conclusions ___________________________________________Group meeting, Feb. 2003_____________________________________________

  5. Intro I: Optical data storage _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Need for all-optical data storage  writing, reading and erasing by photons write electronics CD Process of writing  Thermal in nature (melt, cool down) ... All optical process  FAST  Approaches: - Holographic optical storage (IBM, Lucent) - Hole burning read Optical memory effect observed in III-V semicond., but never in Si ___________________________________________Group meeting, Feb. 2003_____________________________________________

  6. Motivation for using Si Why Si? _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________  King of electronics  Environmentally friendly  Total control of dopants  potential for photonics? (Integration of electronics and photonics, on-chip) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  7. Motivation for using erbium (Er) Why Er? _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________  Inner 4f-electron shell transitions  Sharp transitions in wavelength  Almost independent of host material Emission at 1.54 mm (telecommunications)   Are there other rare earth (RE) elements available? ___________________________________________Group meeting, Feb. 2003_____________________________________________

  8. Silicon doped with rare earths Si bandgap RE ground state Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Eu3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+ _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ ___________________________________________Group meeting, Feb. 2003_____________________________________________

  9. Er3+ excitation in an insulator (SiO2) ELECTRICALLY Patent by STM Electron impact excitation s 10-14 cm-2 LED with quantum efficiencies  10 % (similar to III-V semicond.) STMicroelectronics “New York Times, Oct. 2002 ” _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ OPTICALLY Er3+ ion Er PL @ 1.54 mm Er  12 ms EDFA Direct Er3+ excitation s 10-21 cm-2 All erbium can be excited We need laser to pump Er. We need resonant energies. BAD ! Solution ? Use sensitizers like nc-Si ___________________________________________Group meeting, Feb. 2003_____________________________________________

  10. Optical Er3+ excitation sensitized with nc-Si _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ nc-Si nc-Si Er Er • Current investigations are based on: • Excitation spectroscopy (power and wavelength dependence)  CW or pulsed • Kinetics (rise time, decay time), temperature dependence… How many optically active Er? , Excitation cross section?, Excitation/ Energy transfer mechanism?, Possibility to obtain GAIN? Dr. Wojdak ;-) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  11. Optical Er3+ excitation in crystalline Si Nd:YAG Role of shallow traps excitation / de-excitation?  Mid infrared radiation Source  FREE ELECTRON LASER Er  1 ms CB CB VB _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Er3+ ion Er-related Indirect excitation  s 10-15 cm-2  increased 6 orders of magnitude ! Generation of carriers optically  band-to-band excitation E > Egap (1170 meV) (also possible electrically) Er-related allows recombination level (electron and hole)  Er3+ excitation ___________________________________________Group meeting, Feb. 2003_____________________________________________

  12. Er3+ de-excitation in crystalline Si Up-conversion Er3+ ion Er3+ ion Energy migration Er3+ ion Er3+ ion > Egap _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ CB Er3+ ion Er-related +DE VB Back-transfer  Provided by DE (thermally or by FEL ) Ionization of traps may induce excitation or Auger de-excitation  Thermal effects quench completely RT emission at 1.54 mm ___________________________________________Group meeting, Feb. 2003_____________________________________________

  13. Free Electron Laser (FEL) facility _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ The magnetic field generates periodically curved electron trajectory The induced oscillating dipole moment leads to emission of radiation High brilliance and precise energy tuning: (70-170) meV ___________________________________________Group meeting, Feb. 2003_____________________________________________

  14. Photoluminescence experimental set-up Nd:YAG (532 nm) Dt FEL (10 mm ) emission @ 1.54 mm Tunable delay time (Dt) and variable power Ge / PMT _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ T = 4.2 K sample Spectrometer • Follow changes in: • Spectrum • Amplitude • Kinetics ___________________________________________Group meeting, Feb. 2003_____________________________________________

  15. Experimental set-up (real one) _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ ___________________________________________Group meeting, Feb. 2003_____________________________________________

  16. Photoluminescence of Si:Er   1 ms Intensity at 1.5 m Time (ms) _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Er ions implanted: energy: 300 keV dose: 3*1012 cm-2 Er-concentration: 5*1017cm-3 Oxygen ions co-implanted: energy: 40 keV dose: 3*1013 cm-2 annealing: 900 oC (N2 atmosphere) time: 30 minutes.   1.5 m Intensity Wavelength (nm) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  17. Afterglow and Er PL enhancement _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Nd:YAG FEL Er PL 4.2 K tafterglow 100-150 ms No effect when FEL is fired before Nd:YAG ___________________________________________Group meeting, Feb. 2003_____________________________________________

  18. Dynamics of the enhancement effect _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ tafterglow tenhancement M. Forcales et al., Phys. Rev. B 65, 195208 (2002) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  19. Model _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ matrix CB Er-related level Er3+ Nd:YAG, Ar+ Er PL FEL VB ___________________________________________Group meeting, Feb. 2003_____________________________________________

  20. Temperature dependence _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ ___________________________________________Group meeting, Feb. 2003_____________________________________________

  21. Single carrier excitation IFEL CB CB Er3+ ion Er-related VB Incorrect Model _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Enhancement effect does not follow (IFEL)2, quadratic dependence M. Forcales et al., Phys. Rev. B 67, 0853xx (2003) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  22. Ionization of traps fits the trap-ionization dependence: p = (-II+sqrt(I2I2+4I cINtr))/2c _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Dependence on flux Enhancement amplitude FEL = 14 m MIR photon flux Enhancement has a  dependence related to one carrier excitation ___________________________________________Group meeting, Feb. 2003_____________________________________________

  23. Concept of a Si-based optical storage element _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ Writing beam λ1 (band-to-band) Storage array Storage element Reading beam λ2 (below band gap) Recovered signal at 1.54 mm M. Forcales et al., Solid State Electronics, vol. 47, 165 (2003) ___________________________________________Group meeting, Feb. 2003_____________________________________________

  24. Futures perspectives CB CB Er-related Atr VB _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________ • -Need to improve thermal stability! • How? Using deeper acceptor traps (Zn, Mg). • -No need to use free electron laser! • How? Table-top OPO, CO2 or cascade lasers… • Creation of electrons and holes separated in time! • How? Prepare the system by proper injection of carriers. Si-based optical elements could find applications in: - Telecommunication networks at 1.54 mm - Optical storage devices for use in all-photonic technology - Quantum computing ?… ___________________________________________Group meeting, Feb. 2003_____________________________________________

  25. Conclusions Observation of afterglow and optical memory effect in Si:Er system at temperatures T < 50 K The effect is a fundamental property of silicon (revealed by the optical dopant Er) Proper engineering, will allow long time storage and thermal stability _____________________Van der Waals-Zeeman Institute, University of Amsterdam________________  ___________________________________________Group meeting, Feb. 2003_____________________________________________

More Related