300 likes | 409 Views
Polynomials. GCF. Greatest Common Factor. What is a GCF of a polynomial?. GCF with Variables. Note: With variables, the GCF will always be the smallest exponent of a common variable. Examples: 12x 3 , 16x 2 45a 5 , 50a 7. GCF = 4x 2. GCF = 5a 5. Factor out the GCF.
E N D
GCF Greatest Common Factor
GCF with Variables Note: With variables, the GCF will always be the smallest exponent of a common variable Examples: 12x3, 16x2 45a5, 50a7 GCF = 4x2 GCF = 5a5
Factor out the GCF Put the GCF outside of (parenthesis). Divide each term by the GCF. You will always have the same numbers of terms you start with
16x2 – 8x 8x(2x – 1)
10x – 10y 10(x – y)
8r2 – 24r 8r(r – 3)
6n2 + 15n 3n(2n + 5)
6x3 – 9x2 + 3x 3x(2x2 – 3x + 1)
2a3 – 6a 2a(a2 – 3)
8y3 – 20y2 + 12y 4y(2y2 – 5y + 3)
7x3 – 28x2 7x2(x – 4)
4m3 – 20m 4m(m2 – 5)
3x(x + 2) – 2(x + 2) (x + 2)(3x – 2)
5z(z – 6) + 4(z – 6) (z – 6)(5z + 4)
1. Group the 1st two terms and the 2nd two terms Steps to Factor by Grouping 4 terms 2. Factor out the GCF of each group 3. Write down the common parenthesis 4. In another parenthesis, write the GCFs 5. Check to see if the parenthesis can factor again
x3 + 12x2 – 3x – 36 x2(x + 12) – 3(x + 12) (x + 12)(x2 – 3)
y3 – 14y2 + y – 14 (y3 – 14y2) + (y – 14) y2(y – 14) + 1(y – 14) (y – 14)(y2 + 1)
m3 – 6m2 + 2m – 12 (m3 – 6m2) + (2m – 12) m2(m – 6) + 2(m – 6) (m – 6)(m2 + 2)
p3 + 9p2 + 4p + 36 (p3 + 9p2) + (4p + 36) p2(p + 9) + 4(p + 9) (p + 9)(p2 + 4)
x3 + x2 + 5x + 5 (x3 + x2) + (5x + 5) x2(x + 1) + 5(x + 1) (x + 1)(x2 + 5)
x3 – 3x2 – 5x + 15 (x3 – 3x2) + (-5x + 15) x2(x – 3) – 5(x – 3) (x – 3)(x2 – 5)
3x3 – 3x2 + x – 1 (3x3 – 3x2) + (x – 1) 3x2(x – 1) + 1(x – 1) (x – 1)(3x2 + 1)
t2 + 2t + 3kt + 6k (t + 2)(t + 3k)
x2 + 3x + xk + 3k (x + 3)(x + k)
ad + 3a – d2 – 3d (d + 3)(a – d)
2ab + 14a + b + 7 (b + 7)(2a + 1)
CW/HW - Textbook p. 95 #1 – 18