1 / 7

對稱矩陣

對稱矩陣. 轉置矩陣定義 (transpose matrix) 若 A 為任意 m × n 矩陣,則 A 的轉置矩陣為一 n × m 矩陣且以符號 A T 表示,其中 A T 的元素係將 A 的列與行交換。 ( A T ) ij =( A ) ji. 性質:設下列矩陣之階數使所有運算皆有意義,其中 k 為任義實數,則 (1) ( A ± B ) T = A T ± B T (2) ( kA ) T = k A T (3) ( AB ) T = B T A T (4) ( A T ) T = A. 對稱矩陣定義 (symmetric matrix)

Download Presentation

對稱矩陣

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 對稱矩陣

  2. 轉置矩陣定義(transpose matrix) 若A為任意m×n矩陣,則A的轉置矩陣為一n×m矩陣且以符號AT表示,其中AT的元素係將A的列與行交換。 (AT)ij=(A)ji

  3. 性質:設下列矩陣之階數使所有運算皆有意義,其中k為任義實數,則性質:設下列矩陣之階數使所有運算皆有意義,其中k為任義實數,則 (1) (A±B)T=AT±BT (2) (kA)T=k AT (3) (AB)T= BT AT (4) (AT)T=A

  4. 對稱矩陣定義(symmetric matrix) 若方陣A滿足AT =A,則方陣A稱為對稱方陣。

  5. 例:若矩陣 試求AAT與ATA? 解:

  6. 跡數定義(trace) 若A為一n階方陣,則方陣A主對角線元素的合稱為跡數(trace),以符號tr(A)表示,即 tr(A)=a11+a22+…+ann 例:若矩陣 則 tr(A)=-1+5+7+0=11

  7. 性質:設下列矩陣之階數使所有運算皆有意義,其中k為任義實數,則性質:設下列矩陣之階數使所有運算皆有意義,其中k為任義實數,則 (1) tr(A±B)=tr(A)±tr(B) (2) tr(kA)=ktr(A) (3) tr(AB)=tr(BA) (4) tr(AT)=tr(A)

More Related