340 likes | 353 Views
This article reviews the importance of linear algebra in various applications, such as associating coordinates to points, performing geometrical transformations, analyzing matrices, and more.
E N D
Why do we need Linear Algebra? • We will associate coordinates to • 3D points in the scene • 2D points in the CCD array • 2D points in the image • Coordinates will be used to • Perform geometrical transformations • Associate 3D with 2D points • Images are matrices of numbers • We will find properties of these numbers Octavia I. Camps
Example: Matrices Sum: A and B must have the same dimensions Octavia I. Camps
A and B must have compatible dimensions Examples: Matrices Product: Octavia I. Camps
Examples: Matrices Transpose: If A is symmetric Octavia I. Camps
Example: Matrices Determinant: A must be square Octavia I. Camps
Example: Matrices Inverse: A must be square Octavia I. Camps
Magnitude: P x2 Is a UNIT vector If , v Orientation: Is a unit vector x1 2D Vector Octavia I. Camps
V+w v w Vector Addition Octavia I. Camps
Vector Subtraction V-w v w Octavia I. Camps
av v Scalar Product Octavia I. Camps
v w Inner (dot) Product The inner product is a SCALAR! Octavia I. Camps
j i P x2 v x1 Orthonormal Basis Octavia I. Camps
u w v Orientation: Magnitude: Vector (cross) Product The cross product is a VECTOR! Octavia I. Camps
u w v Vector Product Computation Octavia I. Camps
2D Translation P’ t P Octavia I. Camps
P’ t ty P y x tx 2D Translation Equation Octavia I. Camps
P’ t ty P t y x tx 2D Translation using Matrices P Octavia I. Camps
Homogeneous Coordinates • Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example, • NOTE: If the scalar is 1, there is no need for the multiplication! Octavia I. Camps
Back to Cartesian Coordinates: • Divide by the last coordinate and eliminate it. For example, Octavia I. Camps
P’ t ty P y x tx 2D Translation using Homogeneous Coordinates t P Octavia I. Camps
Scaling P’ P Octavia I. Camps
Scaling Equation P’ Sy.y P y x Sx.x Octavia I. Camps
S T Scaling & Translating P’’=T.P’ P’=S.P P P’’=T.P’=T.(S.P)=(T.S).P Octavia I. Camps
Scaling & Translating P’’=T.P’=T.(S.P)=(T.S).P Octavia I. Camps
Translating & Scaling Scaling & Translating P’’=S.P’=S.(T.P)=(S.T).P Octavia I. Camps
Rotation P P’ Octavia I. Camps
P’ Y’ P y x X’ Rotation Equations Counter-clockwise rotation by an angle Octavia I. Camps
Degrees of Freedom R is 2x2 4 elements BUT! There is only 1 degree of freedom: The 4 elements must satisfy the following constraints: Octavia I. Camps
Scaling, Translating & Rotating Order matters! P’ = S.P P’’=T.P’=(T.S).P P’’’=R.P”=R.(T.S).P=(R.T.S).P R.T.S R.S.T T.S.R … Octavia I. Camps
P’ Y’ g P y x X’ 3D Rotation of Points Rotation around the coordinate axes, counter-clockwise: z Octavia I. Camps
3D Rotation (axis & angle) Octavia I. Camps
3D Translation of Points Translate by a vector t=(tx,ty,tx)T: P’ t Y’ x x’ P z’ y z Octavia I. Camps