130 likes | 193 Views
Math Project. Bader saeed hamad ALGhaithi Ali mubabrak aldhaheri G:11.01. Task 1. P(x)= A+B(x-x 0 ) + c(x-x 0 )(x-x 1 )+D (x-x 0 )(x-x 1 )(x-x 2 ) A=10. -6= A+B (x-x 0 ) -6= A+B(1-(-1)) -6= A+2B -17= A+B( x-x 0 ) + c(x-x 0 )(x-x 1 ) -17= A+B(2-(-1))+C(2-(-1))(2-1)
E N D
Math Project Bader saeedhamadALGhaithi Ali mubabrakaldhaheri G:11.01
-6= A+B(x-x0) -6= A+B(1-(-1)) -6= A+2B -17= A+B(x-x0)+c(x-x0)(x-x1) -17= A+B(2-(-1))+C(2-(-1))(2-1) 82= A+B(x-x0)+c(x-x0)(x-x1)+D(x-x0)(x-x1)(x-x2) 82= A+B(5-(-1))+C(5(-1))(5-1)+D(5-(-1))(5-1)(5-2)
A= 10 -6= A+2B -6= 10+2B -16= 2B B= -8 -17= 10+(-24)+3C -17=(-14)+3C -3=3C C=-1
82= A+6B+24C+72D 82= 10+(-48)+(-24)+72D 82= -62+72D 144= 72D D= 2
P(x)= A+B(x-x0)+c(x-x0)(x-x1)+D(x-x0)(x-x1)(x-x2) P(x)=10+(-8)(x-(-1))+(-1)(x-(-1))+(-1)(x-(-1))(x-1)+2((x-(-1))(x-1)(x-2) 2x3-5x2-10x+5
Task 2 A- Show that the 3 zeros of the polynomial found in task 1 are: First zero lies between -2 and -1 Second zero lies between 0 and 1 Third zero lies between 3 and 4.
Find to the nearest tenth the third zero using the Bisection Method for Approximating Real Zeros. Since f (-2) = -9 and f (-1) = -2 there is one zero between -1, -2. Since f (0) = -3 and f (1) = -4,there is zero between 0, 0.5, Since f (3) = 24 and f (4) = 65 there is zero between 2.5, 3
d) (2x+4) (x+4) – 2x2= 1000 2x2+ 8x + 4x + 16 – 2x2= 1000 12x + 16 = 1000 12x = 1000-16 12x = 984 X = 83
Task 4 • A- Use a graphing program to graph the polynomial found in task 1
B- Make a PowerPoint to present your project and upload it on a wiki.