280 likes | 497 Views
Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars. H. Lenske Institut für Theoretische Physik, Universität Giessen. EuroGS. SFB/TR 16. Covariant Density Functional Theory Infinite Nuclear Matter and Finite Nuclei Hypermatter and L Hypernuclei
E N D
Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars H. Lenske Institut für Theoretische Physik, Universität Giessen EuroGS SFB/TR 16 • Covariant Density Functional Theory • Infinite Nuclear Matter and Finite Nuclei • Hypermatter and L Hypernuclei • Strangeness in Neutron Stars • Summary and Outlook
Kohn-Sham-Theorem & Density Functional for Nuclei: • Hohenberg-Kohn: DFT ~ E[r] • Kohn-Sham : DFT~ E[r,t] • Nuclei : DFT~ E[rp,rn,tp,tn…] At r=0: aSE(S=0,I=1)= -23.8fm; aTE(S=1,I=0)= +5.42fm
DDRH Theory: Covariant DFT by Meson Exchange • SU(3) Flavor Dynamics by Density Functional Theory • „ab initio“: Meson Exchange Interactions in Free Space • In-Medium Interactions by Dirac Brueckner Theory • Covariance and Self-consistence • Thermodynamical Consistency (Hugenholtz van-Hove Theorem)
The DDRH Strategy: Reduce Complexity • Field Theory at the Fermi Momentum Scale • Medium Effects DD Vertex Functionals • Expansion around Mean-Field Limit
DDRH Theory: Constraints on the Vertex Functionals • Lorentz Scalars • Scalars in Isospin/Flavor Space • Functionals of the Field Operators • Reflecting the Dynamical Degrees of Freedom • Determined by Dirac-Brueckner Theory
Nuclear Matter DBHF Vertices (Groningen NN-Potential) Isoscalar Vertices Isovector Vertices
Equation of State in Infinite Nuclear Matter Symmetric Nuclear Matter Pure Neutron Matter
Beyond the Ground State: Adding Dynamics Fermi-Liquid Theory
Landau-Migdal Parameter in Infinite Nuclear Matter F0 in Symmetric Nuclear Matter F‘0 in Symmetric Nuclear Matter
Neutron Skins in Ni and Sn Isotopes DDRH RMF-Calculations Dirac-Brueckner In-Medium Vertices Bonn-A and Groningen NN-Potentials Neutron Skin and Symmetry Energy: Bonn A : a4 = 32 MeV Groningen : a4 = 26 MeV F. Hofmann et al., PRC64 (2001) N. Tsoneva. H.L., PLB586 (2004) N. Tsoneva, H.L., PRC (2006) Sn Data: Krasnahorkay et al. PRL 82 (1999) 3216 (from Charge Exchange Spin-Dipole sum rules) Exp at RCNP Osaka
Measuring Neutron Skins in Ni Isotopes by Antiproton + A Absorption – AIC Proposal at FAIR/NESR p/e Ring NESR AIC Proposal for FAIR H.L., P. Kienle, PLB (2006), nucl-th/05020065
QPM Predictions: PDR Response and Skin Thickness N. Tsoneva, H.L., PLB586 (2004), NPA 2005,PRC (2006)
The Neutron Halo in 19C: Transition from Mean-Field to Correlation Dynamics The DCP picture: Binding by dynamical Polarization Potential
Shape and Size of 19C and 16O z (x,y) 19C18C+n at Tlab=910AMeV on a C-Target: Gtheo =69MeV/c Gexp =68±3MeV/c s(-1n,theo)=192mb s(-1n,exp )=233±51mb EPJ A10 (´01) 49 √<r2>(1/2+) = 5.34 fm S = 0.40 √<r2>(1/2-) = 2.96 fm S = 0.97
Core-excited Fano-Resonances in 15C Core excitations in continuum States: Open Quantum System G~60…140keV Sonja Orrigo, H.L. et al., Phys.Lett. B633 (2006)
Nuclear Structure Studies far off Stability: R3B, AGATA… Proposals for SFRS@FAIR
The 9Li+d 8Li+t Reaction @ REX-ISOLDE Theory and Data Tlab=2.36 AMeV C2S=0.89 C2S=0.34 C2S=1.33 H. Jeppesen, H.L. et al., PLB635 (2006) 17; H.L., G. Schrieder, EPJ A1 (1998)
Strangeness and Hypernuclear Physics: From SU(2) Isospin to SU(3) Flavour Physics
DDRH Hypermatter Equation of State (Binding Energy per Baryon) Minimum at 10% L-content: B0=-18MeV at r0=0.21fm-3
Charge-Neutral Neutron Star Matter in b-Equilibrium Onset of Strangeness: r~2r0: hyperon threshold (S-, L), r>5r0: hypermatter dominates PRC 64 (2001) 025804
DDRH Neutron Star Mass-Radius Relation (TOV Eq.): a4 = 32 MeV a4 = 26 MeV X-ray PRC 64 (2001) 025804; H.L. Springer Lect. Notes (2004) Optical Crab Nebula Chandra X-Ray Observatory and HST Data from the XMM-Newton X-ray space observatory: Gravitational Red-Shift z ~ M/R (Fe-Lines from a series of 28 X-ray bursts from EXO07481676)
Summary and Outlook • DDRH Theory: covariant DFT • Relativistic Field Theory for Nuclei and Hypernuclei • DDRH-Theory: ab initio SU(3) Flavor Dynamics • Applications to Nuclei, Hypernuclei and Neutron Stars • Dynamical Correlations and Spectral Functions • L-S0 Flavor Mixing in Asymmetric Matter • Production and Spectroscopy of Hypernuclei • YY Interactions Contributors: P. Konrad, U. Badarch, A. Ataie, A. Fedoseew, N. Tsoneva, S. Orrigo
Strangeness Production on a Nucleus in a Resonance Model (HypHI Proposal@FAIR) N*(1710) N*(1650) N*(1720) R. Shyam, H.L. et al, PRC 69, 065205 (2004);Nucl.Phys. A764 (2006) 313; S. Bender et al., in prep.
Hypernuclear Physics with PANDA at FAIR@GSI: Production of Double-L Hypernuclei by X- Capture and subsequent Decay in a 2-step Process