1 / 28

Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars

Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars. H. Lenske Institut für Theoretische Physik, Universität Giessen. EuroGS. SFB/TR 16. Covariant Density Functional Theory Infinite Nuclear Matter and Finite Nuclei Hypermatter and L Hypernuclei

dane
Download Presentation

Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Covariant Density Functional Theory for Nuclei, Hypernulcei, and Neutron Stars H. Lenske Institut für Theoretische Physik, Universität Giessen EuroGS SFB/TR 16 • Covariant Density Functional Theory • Infinite Nuclear Matter and Finite Nuclei • Hypermatter and L Hypernuclei • Strangeness in Neutron Stars • Summary and Outlook

  2. Kohn-Sham-Theorem & Density Functional for Nuclei: • Hohenberg-Kohn: DFT ~ E[r] • Kohn-Sham : DFT~ E[r,t] • Nuclei : DFT~ E[rp,rn,tp,tn…] At r=0: aSE(S=0,I=1)= -23.8fm; aTE(S=1,I=0)= +5.42fm

  3. DDRH Theory: Covariant DFT by Meson Exchange • SU(3) Flavor Dynamics by Density Functional Theory • „ab initio“: Meson Exchange Interactions in Free Space • In-Medium Interactions by Dirac Brueckner Theory • Covariance and Self-consistence • Thermodynamical Consistency (Hugenholtz van-Hove Theorem)

  4. The DDRH Strategy: Reduce Complexity • Field Theory at the Fermi Momentum Scale • Medium Effects DD Vertex Functionals • Expansion around Mean-Field Limit

  5. DDRH Theory: Constraints on the Vertex Functionals • Lorentz Scalars • Scalars in Isospin/Flavor Space • Functionals of the Field Operators • Reflecting the Dynamical Degrees of Freedom • Determined by Dirac-Brueckner Theory

  6. The DDRH Baryon Self-Energies:

  7. Nuclear Matter DBHF Vertices (Groningen NN-Potential) Isoscalar Vertices Isovector Vertices

  8. The d/a0(980) Meson and Effective Masses

  9. Equation of State in Infinite Nuclear Matter Symmetric Nuclear Matter Pure Neutron Matter

  10. Symmetry Energy in Infinite Nuclear Matter

  11. Beyond the Ground State: Adding Dynamics Fermi-Liquid Theory

  12. Landau-Migdal Parameter in Infinite Nuclear Matter F0 in Symmetric Nuclear Matter F‘0 in Symmetric Nuclear Matter

  13. Neutron Skins in Ni and Sn Isotopes DDRH RMF-Calculations Dirac-Brueckner In-Medium Vertices Bonn-A and Groningen NN-Potentials Neutron Skin and Symmetry Energy: Bonn A : a4 = 32 MeV Groningen : a4 = 26 MeV F. Hofmann et al., PRC64 (2001) N. Tsoneva. H.L., PLB586 (2004) N. Tsoneva, H.L., PRC (2006) Sn Data: Krasnahorkay et al. PRL 82 (1999) 3216 (from Charge Exchange Spin-Dipole sum rules) Exp at RCNP Osaka

  14. Measuring Neutron Skins in Ni Isotopes by Antiproton + A Absorption – AIC Proposal at FAIR/NESR p/e Ring NESR AIC Proposal for FAIR H.L., P. Kienle, PLB (2006), nucl-th/05020065

  15. QPM Predictions: PDR Response and Skin Thickness N. Tsoneva, H.L., PLB586 (2004), NPA 2005,PRC (2006)

  16. Radial Transition Densities in Sn Isotopes

  17. The Neutron Halo in 19C: Transition from Mean-Field to Correlation Dynamics The DCP picture: Binding by dynamical Polarization Potential

  18. Shape and Size of 19C and 16O z (x,y) 19C18C+n at Tlab=910AMeV on a C-Target: Gtheo =69MeV/c Gexp =68±3MeV/c s(-1n,theo)=192mb s(-1n,exp )=233±51mb EPJ A10 (´01) 49 √<r2>(1/2+) = 5.34 fm S = 0.40 √<r2>(1/2-) = 2.96 fm S = 0.97

  19. Core-excited Fano-Resonances in 15C Core excitations in continuum States: Open Quantum System G~60…140keV Sonja Orrigo, H.L. et al., Phys.Lett. B633 (2006)

  20. Nuclear Structure Studies far off Stability: R3B, AGATA… Proposals for SFRS@FAIR

  21. The 9Li+d  8Li+t Reaction @ REX-ISOLDE Theory and Data Tlab=2.36 AMeV C2S=0.89 C2S=0.34 C2S=1.33 H. Jeppesen, H.L. et al., PLB635 (2006) 17; H.L., G. Schrieder, EPJ A1 (1998)

  22. Strangeness and Hypernuclear Physics: From SU(2) Isospin to SU(3) Flavour Physics

  23. DDRH Hypermatter Equation of State (Binding Energy per Baryon) Minimum at 10% L-content: B0=-18MeV at r0=0.21fm-3

  24. Charge-Neutral Neutron Star Matter in b-Equilibrium Onset of Strangeness: r~2r0: hyperon threshold (S-, L), r>5r0: hypermatter dominates PRC 64 (2001) 025804

  25. DDRH Neutron Star Mass-Radius Relation (TOV Eq.): a4 = 32 MeV a4 = 26 MeV X-ray PRC 64 (2001) 025804; H.L. Springer Lect. Notes (2004) Optical Crab Nebula Chandra X-Ray Observatory and HST Data from the XMM-Newton X-ray space observatory: Gravitational Red-Shift z ~ M/R (Fe-Lines from a series of 28 X-ray bursts from EXO07481676)

  26. Summary and Outlook • DDRH Theory: covariant DFT • Relativistic Field Theory for Nuclei and Hypernuclei • DDRH-Theory: ab initio SU(3) Flavor Dynamics • Applications to Nuclei, Hypernuclei and Neutron Stars • Dynamical Correlations and Spectral Functions • L-S0 Flavor Mixing in Asymmetric Matter • Production and Spectroscopy of Hypernuclei • YY Interactions Contributors: P. Konrad, U. Badarch, A. Ataie, A. Fedoseew, N. Tsoneva, S. Orrigo

  27. Strangeness Production on a Nucleus in a Resonance Model (HypHI Proposal@FAIR) N*(1710) N*(1650) N*(1720) R. Shyam, H.L. et al, PRC 69, 065205 (2004);Nucl.Phys. A764 (2006) 313; S. Bender et al., in prep.

  28. Hypernuclear Physics with PANDA at FAIR@GSI: Production of Double-L Hypernuclei by X- Capture and subsequent Decay in a 2-step Process

More Related