700 likes | 857 Views
第十章 脂类与脂类代谢 第一节 脂类的概述. 脂类( lipids )泛指不溶于水,易溶于有机溶剂的各类生物分子。脂类都含有碳、氢、氧元素,有的还含有氮和磷。脂类所包括的物质范围很广,结构差异也大。 他们的共同特征是以长链或稠环脂肪烃分子为母体。脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。极性脂的主体是脂溶性的,其中的部分结构是水溶性的。. 1 、 脂类的 分类. 1.1 单纯脂 单纯脂是脂肪酸与醇结合成的脂,没有极性基团,是非极性脂,又称中性脂。三酰甘油、胆固醇酯、蜡等都是单纯脂。蜡是由高级脂肪酸和高级一元醇形成的酯。.
E N D
第十章 脂类与脂类代谢 第一节 脂类的概述 脂类(lipids)泛指不溶于水,易溶于有机溶剂的各类生物分子。脂类都含有碳、氢、氧元素,有的还含有氮和磷。脂类所包括的物质范围很广,结构差异也大。 他们的共同特征是以长链或稠环脂肪烃分子为母体。脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。极性脂的主体是脂溶性的,其中的部分结构是水溶性的。
1、脂类的分类 • 1.1单纯脂 • 单纯脂是脂肪酸与醇结合成的脂,没有极性基团,是非极性脂,又称中性脂。三酰甘油、胆固醇酯、蜡等都是单纯脂。蜡是由高级脂肪酸和高级一元醇形成的酯。
单纯脂是由一分子甘油与一至三分子脂肪酸所形成的脂。单纯脂是由一分子甘油与一至三分子脂肪酸所形成的脂。 • 根据脂肪酸数量,可分为单酰甘油、二酰甘油和三酰甘油(过去称为甘油三脂)。 • 前两者在自然界中存在极少,而三酰甘油是脂类中含量最丰富的一类。通常所说的油脂就是指三酰甘油
人体及高等动物体内的脂肪酸有以下特点: • 是由偶数碳原子构成的一元酸,最多见的是C16、C18、C22等长链脂肪酸。 • 碳链无分支。 • 分为饱和脂肪酸和不饱和脂肪酸。 • 大部分的不饱和脂肪酸在体内可以合成,亚油酸、亚麻酸和花生四烯酸不能合成,必需从食物中获取,称为必需脂肪酸。
1.2复合脂 • 复合脂又称类脂,是含有磷酸等非脂成分的脂类。复合脂含有极性基团,是极性脂。磷脂是主要的复合脂,分为甘油磷脂类和鞘氨醇磷脂。 • 甘油磷脂又称磷酸甘油酯,是磷脂酸的衍生物。甘油磷脂中的取代基最常见的是胆碱、乙醇胺和丝氨酸,称为卵磷脂、脑磷脂和丝氨酰磷脂,都不溶于水而溶于有机溶剂。
X: HO—CH2CH2N+(CH2)3(胆碱) HO—CH2CH2—NH3+ (乙醇胺) HO—CH2CH—COO- ︱ NH3+ (丝氨酸) 卵磷脂 磷脂的结构
1.3 非皂化脂 • 包括类固醇、萜类和前列腺素类。不含脂肪酸,不能被碱水解,称为非皂化脂。类固醇又称甾醇,是以环戊烷多氢菲为母核的一种脂类。 • 胆固醇是人体内最重要的类固醇,它因有羟基而属于极性脂。 • 萜类是异戊二烯聚合物,前列腺素是二十碳酸衍生物。
1.4 衍生脂 • 指上述物质的衍生产物,如甘油、脂肪酸及其氧化产物,乙酰辅酶A。 1.5 结合脂类 • 脂与糖或蛋白质结合,形成糖脂和脂蛋白。
2 脂类分布与功能 2.1 三酰甘油主要是储备能源 2.2 极性脂参与生物膜的构成 2.3 有些脂类及其衍生物具有重要生物活性 2.4 有些脂类是生物表面活性剂 2.5 作为溶剂
第二节 甘油三脂的分解代谢 一、 甘油三脂的水解 • 组织脂肪酶有三种,脂肪酶、甘油二脂脂肪酶和甘油单脂脂肪酶,逐步水解R3、R1、R2,生成甘油和游离脂肪酸。第一步是限速步骤,肾上腺素、肾上腺皮质激素、高血糖素通过cAMP和蛋蛋白激酶激活,胰岛素和前列腺素E1相反,有抗脂解作用。
二、 甘油代谢脂肪细胞没有甘油激酶,所以甘油被运到肝脏,由甘油激酶磷酸化为3-磷酸甘油,再由磷酸甘油脱氢酶催化为磷酸二羟丙酮,进入酵解或异生,并生成NADH。
三、 脂肪酸的氧化 • 3.1 饱和偶数碳脂肪酸的氧化 • 1.脂肪酸的活化:脂肪酸先生成脂酰辅酶A才能进行氧化,称为活化。由脂酰辅酶A合成酶(硫激酶)催化,线粒体中的酶作用于4~10个碳的脂肪酸,内质网中的酶作用于12个碳以上的长链脂肪酸。
肉碱的穿梭过程 2.转运
4、脂肪酸β-氧化作用小结 (1)脂肪酸β-氧化时仅需活化一次,消耗1个ATP的两个高能键 (2)β-氧化包括脱氢、水化、脱氢、硫解4个重复步骤 (3)每循环一次产生1个FADH2、1个NADH、1 个乙酰-CoA,共计 1.5+2.5+10=14ATP 以软脂酸为例: 7次循环:7 X(1.5+2.5+10)+10 = 108 ATP 活化消耗: -2个高能磷酸键 • 净生成: 108 - 2 = 106 ATP
5、β-氧化的调节 ⑴脂酰基进入线粒体的速度是限速步骤, 长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶Ⅰ,限制脂肪酸氧化。 ⑵[NADH]/[NAD+]比率高时,β—羟脂酰CoA脱氢酶便受抑制。 ⑶乙酰CoA浓度高时,可抑制硫解酶,抑制氧化
3.2 不饱和脂肪酸的氧化 • 1.单不饱和脂肪酸的氧化: 油酸在9位有顺式双键,三个循环后形成Δ3顺烯脂酰辅酶A。在Δ3顺Δ2反烯脂酰辅酶A异构酶催化下继续氧化。这样一个双键少2个ATP。
2.多不饱和脂肪酸的氧化: • 亚油酸在9位和12位有两个顺式双键,4个循环后生成Δ2顺烯脂酰辅酶A,水化生成D-产物,在β-羟脂酰辅酶A差向酶作用下转变为L型,继续氧化
3.3 奇数碳脂肪酸的氧化 • 奇数碳脂肪酸经β氧化可产生丙酰辅酶A,某些支链氨基酸也生成丙酸。丙酸有下列两条代谢途径: • 1.丙酰辅酶A在丙酰辅酶A羧化酶催化下生成D-甲基丙二酸单酰辅酶A,并消耗一个ATP。在差向酶作用下生成L-产物,再由变位酶催化生成琥珀酰辅酶A,进入三羧酸循环。需腺苷钴胺素作辅酶。 • 2.丙酰辅酶A经脱氢、水化生成β-羟基丙酰辅酶A,水解后在β-羟基丙酸脱氢酶催化下生成丙二酸半醛,产生一个NADH。丙二酸半醛脱氢酶催化脱羧,生成乙酰辅酶A,产生一个NADPH。
3.4 脂肪酸的α-氧化 • 存在于植物种子、叶子,动物脑和肝脏。以游离脂肪酸为底物,涉及分子氧或过氧化氢,对支链、奇数和过长链(22)脂肪酸的降解有重要作用。哺乳动物叶绿素代谢时,经过水解、氧化,生成植烷酸,其β位有甲基,需通过α氧化脱羧才能继续β氧化。
α氧化有以下途径: • 1.脂肪酸在单加氧酶作用下α羟化,需Fe2+和抗坏血酸,消耗一个NADPH。经脱氢生成α-酮脂肪酸,脱羧生成少一个碳的脂肪酸。 • 2.在过氧化氢存在下,经脂肪酸过氧化物酶催化生成D-α-氢过氧脂肪酸,脱羧生成脂肪醛,再脱氢产生脂肪酸或还原。
3.5 ω-氧化 12个碳以下的脂肪酸可通过ω-氧化降解,末端甲基羟化,形成一级醇,再氧化成醛和羧酸。一些细菌可通过ω-氧化将烷烃转化为脂肪酸,从两端进行ω-氧化降解,速度快。
四、 酮体代谢 • 乙酰辅酶A在肝和肾可生成乙酰乙酸、β-羟基丁酸和丙酮,称为酮体。 • 肝通过酮体将乙酰辅酶A转运到外周组织中作燃料。心和肾上腺皮质主要以酮体作燃料,脑在饥饿时也主要利用酮体。 • 平时血液中酮体较少,有大量乙酰辅酶A必需代谢时酮体增多,可引起代谢性酸中毒,如糖尿病。 4.1 酮体的合成
4.2 酮体分解 • 羟丁酸可由羟丁酸脱氢酶氧化生成乙酰乙酸,在肌肉线粒体中被3-酮脂酰辅酶A转移酶催化生成乙酰乙酰辅酶A和琥珀酸。也可由乙酰乙酰辅酶A合成酶激活,但前者活力高且分布广泛,起主要作用。乙酰乙酰辅酶A可加入β-氧化。
4.3 酮体生成及利用的生理意义 • 1.在正常情况下,酮体是肝脏输出能源的一种形式; • 2.在饥饿或疾病情况下,为心、脑等重要器官提供必要的能源。
4.4 酮体生成的调节 1)饱食:胰岛素增加,脂解作用抑制,脂肪动员减 少,进入肝中脂酸减少,酮体生成减少。 饥饿:胰高血糖素增加,脂肪动员量加强,血中游离脂酸浓度升高,利于β氧化及酮体的生成。 2)肝细胞糖原含量及其代谢的影响: 肝细胞糖原含量丰富时,脂酸合成甘油三酯及磷脂。 肝细胞糖原供给不足时,脂酸主要进入线粒体,进入β—氧化,酮体生成增多。 3)丙二酸单酰CoA抑制脂酰CoA进入线粒体
第三节 甘油三酯的合成代谢 一、软脂酸的合成
柠檬酸的穿梭机制 1、乙酰辅酶A的转运
2 丙二酸单酰辅酶A的生成 • 乙酰辅酶A以丙二酸单酰辅酶A的形式参加合成。由乙酰辅酶A羧化酶催化。此反应是脂肪酸合成的限速步骤,被柠檬酸别构激活,受软脂酰辅酶A抑制。此酶有三个亚基:生物素羧化酶(BC)、生物素羧基载体蛋白(BCCP)和羧基转移酶(CT)
3 脂肪酸合成酶体系 • 有7种蛋白,以脂酰基载体蛋白为中心,中间产物以共价键与其相连。载体蛋白含巯基,与辅酶A类似,可由辅酶A合成。
二、其他脂肪酸的合成 (一)、 脂肪酸的延长 • 1.线粒体酶系:在基质中,可催化短链延长。基本是β-氧化的逆转,但第四个酶是烯脂酰辅酶A还原酶,氢供体都是NADPH。 • 2.内质网酶系:粗糙内质网可延长饱和及不饱和脂肪酸,与脂肪酸合成相似,但以辅酶A代替ACP。可形成C24
(二)、不饱和脂肪酸的形成 • 1.单烯脂酸的合成:需氧生物可通过单加氧酶在软脂酸和硬脂酸的9位引入双键,生成棕榈油酸和油酸。消耗NADPH。厌氧生物可通过β-羟脂酰ACP脱水形成双键。 • 2.多烯脂酸的合成:由软脂酸通过延长和去饱和作用形成多不饱和脂肪酸。哺乳动物由四种前体转化:棕榈油酸(n7)、油酸(n9)、亚油酸(n6)和亚麻酸(n3),其中亚油酸和亚麻酸不能自己合成,必需从食物摄取,称为必需脂肪酸。其他脂肪酸可由这四种前体通过延长和去饱和作用形成。
三、甘油三酯的合成 • 主要在肝脏和脂肪组织 1 、前体合成 • 包括L-α-磷酸甘油和脂酰辅酶A。细胞质中的磷酸二羟丙酮经α-磷酸甘油脱氢酶催化,以NADH还原生成磷酸甘油。也可由甘油经甘油激酶磷酸化生成,但脂肪组织缺乏有活性的甘油激酶。
2 、生成磷脂酸 • 磷酸甘油与脂酰辅酶A生成单脂酰甘油磷酸,即溶血磷脂酸,再与脂酰辅酶A生成磷脂酸。都由甘油磷酸脂酰转移酶催化。磷酸二羟丙酮也可先酯化,再还原生成溶血磷脂酸。 3 、合成过程 • 先被磷脂酸磷酸酶水解,生成甘油二酯,再由甘油二酯转酰基酶合成甘油三酯。
四、 各组织的脂肪代谢 • 脂肪组织脂解的限速酶是脂肪酶,生成的游离脂肪酸进入血液,可用于氧化或合成,而甘油不能用于合成。肝脏可将脂肪酸氧化或合成酮体或合成甘油三酯。
第四节 磷脂代谢 • 磷脂类合成反应几乎是在膜结构表面进行的,在真核生物中主要是内质网、线粒体和高尔基体,细菌是在内原生质膜。
一、甘油磷脂的代谢 (一) 甘油磷脂的合成代谢 • 甘油磷脂的生物合成是甘油-3-磷酸或磷酸二羟丙酮经酰基化转化为磷脂酸,可进一步经两种途径转换为磷脂。 • 磷脂酸与CTP作用,生成CDP-二酰甘油,它在细菌中转换为磷脂酰丝氨酸,在动物、大肠杆菌中,磷脂酰丝氨酸可脱羧生成磷脂酰乙醇胺。CDP-二脂酰甘油是磷脂合成中的关键中间体。 • 从头合成途径,在真核生物中,磷脂酸水解为甘油二酯,与CDP-胆碱或CDP-乙醇氨生成磷脂酰胆碱或磷脂酰乙醇胺。
1.脑磷脂的合成: • ①乙醇胺的磷酸化,乙醇胺激酶催化羟基磷酸化,生成磷酸乙醇胺。②与CTP生成CDP-乙醇胺,由磷酸乙醇胺胞苷转移酶催化,放出焦磷酸。③与甘油二酯生成脑磷脂,放出CMP。由磷酸乙醇胺转移酶催化。该酶位于内质网上,内质网上还有磷脂酸磷酸酶,水解分散在水中的磷脂酸,用于磷脂合成。肝脏和肠粘膜细胞的可溶性磷脂酸磷酸酶只能水解膜上的磷脂酸,合成甘油三酯。
2.卵磷脂合成: • ①与脑磷脂类似,利用已有的胆碱,先磷酸化,再连接CDP作载体,与甘油二酯生成卵磷脂。②从头合成途径:将脑磷脂的乙醇胺甲基化,生成卵磷脂。供体是S-腺苷甲硫氨酸,由磷脂酰乙醇胺甲基转移酶催化,生成S-腺苷高半胱氨酸。共消耗3个供体。
3.磷脂酰肌醇的合成: • ①磷脂酸与CTP生成CDP-二脂酰甘油,放出焦磷酸。由磷脂酰胞苷酸转移酶催化。②CDP-二脂酰甘油:肌醇磷脂酰转移酶催化生成磷脂酰肌醇。磷脂酰肌醇激酶催化生成PIP,PIP激酶催化生成PIP2。磷脂酶C催化PIP2水解生成IP3和DG,IP3使内质网释放钙,DG增加蛋白激酶C对钙的敏感性,通过磷酸化起第二信使作用。
(二)甘油磷脂的分解代谢 • 甘油磷脂的分解靠存在于体内的各种磷脂酶将其分解为脂肪酸、甘油、磷酸等,然后再进一步降解。 • 磷脂酶有以下4类:磷脂酶A1-水解C1;磷脂酶A2-水解C2;磷脂酶C-水解C3,生成1,2-甘油二酯,与第二信使有关;磷脂酶D-生成磷脂酸和碱基;磷脂酶B-同时水解C1和C2。
二、 鞘磷脂的代谢 • 鞘氨醇可在全身各组织细胞的内质网合成,合成所需的原料主要是软脂酰CoA和丝氨酸,并需磷酸吡哆醛、NADPH及FAD等辅助因子参与。