1 / 22

: :

???. 4-2. ??? ???????. . ????. ??????:?????????????????????????????????:???????????????????????????????. ????. ???? (random variable) : ????? O ?????? R ???????????????????????????????? (univariate random variable) ????????,??????????????,????????????????. ??????. ??????(discrete random variable) : ???????????????? (finite) ????????? (countably infinite) ? ??: ?????????????????,????????????: ???????????????????????????,??????????? .

Download Presentation

: :

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. ??? 4- 4-1

    2. ??? 4-2

    3. ???? ??????: ??????????? ????????? ??????? ??????: ??????????? ????????? ???? ???????

    4. ???? ???? (random variable) : ????? O ?????? R ???? ?????????????????? ?????????? (univariate random variable) ? ???????,??????????????,????????????????

    5. ?????? ??????(discrete random variable) : ???????????????? (finite) ????????? (countably infinite) ? ??: ?????????????????,?????????? ??: ???????????????????????????,???????????

    6. ???? X ???????????,??? b1,b2,…? ?? X ????? fx ? fX(bi ) = P({?:X(? ) = bi }), i = 1,2,3… ?????? fx ? 0 ? ???????? X ???????????????,???? X ?????? fx ?????????:

    7. ?????? ?????? (cumulative distribution function) :???? X ?????? R ??? [0 1] ???,????? FX(a) = P({?:X(? ) ? a}) ?????????????????????????????????(discrete distribution function) ? ?????????????????? ??????????????? ?????? FX ????? (step function) ,?? X ??????? b1,b2…..??????? (jump) ???????????????

    8. ????????? -- ??? ??????? (moment) ???????????? (?????????)?????????,??????????? ? fX ???????? X ?????,E ???????(expectation operator) ? E(X) ?? X ??? (mean) ???? (expected value) ,???????: ???????????????????? (weighted average),???????????? ????????,?????????

    9. ????????? -- ??? ????????:?????? a ? b, E (aX+b) = a E(X) + b ?????????????????,????????????? ???????????????????? ?????????????????????

    10. ????????? -- ??? ?????? X2 ????? X ???????? bi ????????: E(X2) ??? X ?????? (second moment): ????? ???????? (variability) ?????? ???????: ??????????????????????,???? X – E(X) ?????????????????: ????????????? (second central moment) ???? (variance), ??? var(X) ?

    11. ????????? -- ??? ???????: ?? X ???????????????,???????? ??????????????,?????????????????? ?????????????????????????: var(X) =E[X – E(X)]2 = E(X2) ? [E(X)]2 ???????????? (standard deviation) ? ? X ???????????? a ? b , var(aX+b) = var(aX) = a2 var(X) ???????????,???????????

    12. ????????? -- ??? ???????? (standardization): ???????????????????????? ??????? X ,? ?????????????????? ????? 0, ????? 1 ?

    13. ?????? -- ?? ???????? X1 ? X2 ????????: P({X1 = -2}) = P({X1 = 2}) = 0.5, P({X2 = -2}) = P({X2 = 4}) = 0.5. ??, E(X1) = (-2)(0.5) + (2)(0.5) = 0, E(X2) = (-2)(0.5) + (4)(0.5) = 1. E(X12) = (-2)2(0.5) + (4)2(0.5) = 10, E(X22) = (-2)2(0.5) + (2)2(0.5) = 4 . var(X1 ) = E(X12) – E(X1) 2 = 4 , var(X2 ) = E(X22) – E(X2) 2 = 9 .

    14. ?????? -- ?? ? X3=X1 + 2,? E(X3) = (0)(0.5) + (4)(0.5) = 2, E(X32)=8 var(X3 )= E(X32) – [E(X3)]2 = 4 .

    15. ??????? ????? (Bernoulli experiment): ??????????? ??:??????????? ??????? (Bernoulli random variable) X ?: X = 1, ????????, X = 0, ????????.

    16. ??????? ? p ?? P({ X=1 }), ??????????????: fX(b ; p) = P({ X = b }) = pb ? (1 ? p)(1?b),b = 0,1 fX ??????? (parameter) p,? p ???????? {X=1} ?????????? E(X) = 1 ? p + 0 ? (1 ? p) = p. var(X) = (1 ? p)2 ? p + p2 ? (1 ? p) = p(1 – p) ????????????:

    17. ?????? ?????? (continuous random variable ) ?????????? (continuous distribution function) ?????: ???? X ??????? FX ????? (continuous function),???????????????????(differentiable) ? ? X ????????,??????? a ,P({X=a})=0 ?? X ??????? a ?????? 0 ? ? X ????????,FX???? FX (a) = ?a-? fX(b) db ? ?? fX ? FX ????,?????????? fX ?????????? FX (a) ??????????????????????????????

    18. ?????? ? X ???????, fX (a) ? P({X=a}) ?????;?????? 0,??????? 0? ???????????????????,????????

    19. ????????? ????????????????,??????,????????? ?????????: ?????????? ?????????: ????????????? ? fx ?????????X ???(???)? E(X)? X ???????????,????????????????? X ????????????:

    20. ????????? ?????????????????????????????,???????????????,???????? ??????????????????????? ? E(X) ????,???? E(X) ???,?? X ???????? ???????????????(????) ,???????????

    21. ??????—?? ??? [r,s] ???????????????,????????: ??????: ??: ???:

    22. ???? ? q ??? 0 ? 1 ???????????? Fx ? q ???(quantile) ???? ??? d ?;? dq ?? q ???,? ?? q ???????????????,???????????????? ? d* ???????????,? d* ??????: ?????????????????????????????????????,????????

    23. ??????? ????? X ????????,??????? c > 0, P({|X ? E(X)| ? c}) ? var(X)/c2. ??:? k = 2,???? 3/4 = 75% ?????????????????? ??:? k = 3,???? 8/9 = 88.9% ??????????????????

More Related