210 likes | 682 Views
2. The Cosmological Constant Problem. At the Planck era. For a pioneering review on this problem see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).For more recent and detailed reviews see V. Sahni and A. Starobinsky, Int. J. Mod. Phys.D 9, 373 (2000), astro-ph/9904398; N. Straumann, The history of the cosmologicalconstant problem gr-qc/0208027; T.Padmanabhan, Phys.Rept. 380, 235 (2003),hep-th/0212290..
E N D
1. The Cosmological Constant from the Wheeler De Witt Equation Remo Garattini
Università di Bergamo
I.N.F.N. - Sezione di Milano
2. 2 The Cosmological Constant Problem At the Planck era
3. 3 Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev.160, 1113 (1967).
4. 4 Re-writing the WDW equation Where
5. 5 Eigenvalue problem
6. 6 Form of the background
7. 7 Canonical Decomposition h is the trace (spin 0)
(Lx)ij is the gauge part [spin 1 (transverse) + spin 0 (longitudinal)]
h^ij represents the transverse-traceless component of the perturbation ? graviton (spin 2)
8. 8
9. 9 Graviton Contribution
10. 10 Regularization
11. 11
12. 12 Renormalization Bare cosmological constant changed into
13. 13 Renormalization Group Equation Eliminate the dependance on m and impose
14. 14 Energy Minimization (L Maximization) At the scale m0
15. 15 De Sitter Case
16. 16 Extension to f(R) Theories[S. Capozziello and R.G., Class. Quant. Grav., 24, 1627 (2007)] A straightforward generalization is a f(R) theory substituting the classical Lagrangian with
17. 17
18. 18
19. 19 De Sitter Case for a f(R) Theory
20. 20 AdS Case for a f(R) Theory
21. 21 Conclusions, Problems and Outlook Analysis to be completed.
Beyond the W.K.B. approximation of the Lichnerowicz spectrum.
Discrete Lichnerowicz spectrum.
Introducing massive graviton.
In progress, spectrum of spherically symmetric metrics