1 / 20

Design for Testability Theory and Practice Lecture 7: Sequential ATPG

Design for Testability Theory and Practice Lecture 7: Sequential ATPG. Problem of sequential circuit ATPG Time-frame expansion Nine-valued logic ATPG implementation and drivability Complexity of ATPG Cycle-free and cyclic circuits Asynchronous circuits Summary. Sequential Circuits.

Download Presentation

Design for Testability Theory and Practice Lecture 7: Sequential ATPG

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design for Testability Theory and PracticeLecture 7: Sequential ATPG • Problem of sequential circuit ATPG • Time-frame expansion • Nine-valued logic • ATPG implementation and drivability • Complexity of ATPG • Cycle-free and cyclic circuits • Asynchronous circuits • Summary Day-2 AM Lecture 7

  2. Sequential Circuits • A sequential circuit has memory in addition to combinational logic. • Test for a fault in a sequential circuit is a sequence of vectors, which • Initializes the circuit to a known state • Activates the fault, and • Propagates the fault effect to a primary output • Methods of sequential circuit ATPG • Time-frame expansion methods • Simulation-based methods Day-2 AM Lecture 7

  3. Example: A Serial Adder Bn An 1 1 s-a-0 D 1 1 D X Cn Cn+1 X 1 Combinational logic Sn X FF Day-2 AM Lecture 7

  4. Time-Frame Expansion Bn-1 An-1 Bn An Time-frame -1 Time-frame 0 1 1 1 1 s-a-0 s-a-0 D X D D 1 1 D 1 Cn-1 X D 1 Cn 1 Cn+1 X 1 Combinational logic Combinational logic 1 Sn-1 Sn X D FF Day-2 AM Lecture 7

  5. Concept of Time-Frames • If the test sequence for a single stuck-at fault contains n vectors, • Replicate combinational logic block n times • Place fault in each block • Generate a test for the multiple stuck-at fault using combinational ATPG with 9-valued logic Vector – n +1 Vector – 1 Vector 0 Fault Unknown or given Init. state Time- Frame - n+1 Time- frame 0 Time- frame -1 Next state State variables Comb. block PO – 1 PO 0 PO – n +1 Day-2 AM Lecture 7

  6. Example for Logic Systems FF1 B A FF2 s-a-1 Day-2 AM Lecture 7

  7. Five-Valued Logic (Roth)0,1, D, D, X A 0 A 0 s-a-1 s-a-1 D D X X X FF1 FF1 X D D FF2 FF2 B B X X Time-frame 0 Time-frame -1 Day-2 AM Lecture 7

  8. Nine-Valued Logic (Muth)0,1, 1/0, 0/1,1/X, 0/X, X/0, X/1, X A 0 A X s-a-1 s-a-1 X/1 0/1 0/X 0/X X FF1 FF1 0/1 X X/1 FF2 FF2 B B X 0/1 Time-frame 0 Time-frame -1 Day-2 AM Lecture 7

  9. Implementation of ATPG • Select a PO for fault detection based on drivability analysis. • Place a logic value, 1/0 or 0/1, depending on fault type and number of inversions. • Justify the output value from PIs, considering all necessary paths and adding backward time-frames. • If justification is impossible, then use drivability to select another PO and repeat justification. • If the procedure fails for all reachable POs, then the fault is untestable. • If 1/0 or 0/1 cannot be justified at any PO, but 1/X or 0/X can be justified, the the fault is potentially detectable. Day-2 AM Lecture 7

  10. Drivability Example (11, 16) (22, 17) (10, 15) (10, 16) d(0/1) = d(1/0) = 32 8 s-a-1 d(0/1) = 4 d(1/0) = d(0/1) = d(1/0) = 20 8 8 (5, 9) (4, 4) (17, 11) d(0/1) = 9 d(1/0) = (6, 10) (CC0, CC1) = (6, 4) d(0/1) = 120 d(1/0) = 27 FF 8 d(0/1) = 109 d(1/0) = 8 CC0 and CC1 are SCOAP combinational controllabilities d(0/1) and d(1/0) of a line are effort measures for driving a specific fault effect to that line Day-2 AM Lecture 7

  11. Complexity of ATPG • Synchronous circuit -- All flip-flops controlled by clocks; PI and PO synchronized with clock: • Cycle-free circuit – No feedback among flip-flops: Test generation for a fault needs no more than dseq + 1 time-frames, where dseq is the sequential depth. • Cyclic circuit – Contains feedback among flip-flops: May need 9Nff time-frames, where Nff is the number of flip-flops. • Asynchronous circuit – Higher complexity! Time- Frame max-1 Time- Frame max-2 Time- Frame -2 Time- Frame -1 Time- Frame 0 Smax S2 S1 S0 S3 max = Number of distinct vectors with 9-valued elements= 9Nff Day-2 AM Lecture 7

  12. Cycle-Free Circuits • Characterized by absence of cycles among flip-flops and a sequential depth, dseq. • dseq is the maximum number of flip-flops on any path between PI and PO. • Both good and faulty circuits are initializable. • Test sequence length for a fault is bounded by dseq + 1. Day-2 AM Lecture 7

  13. F2 2 F3 F1 Level = 1 3 Cycle-Free Example Circuit F2 2 All faults are testable in this circuit. F3 F1 3 Level = 1 s - graph dseq = 3 Day-2 AM Lecture 7

  14. Cyclic Circuit Example Modulo-3 counter Z CNT F2 F1 s - graph F2 F1 Day-2 AM Lecture 7

  15. Modulo-3 Counter • Cyclic structure – Sequential depth is undefined. • Circuit is not initializable. No tests can be generated for any stuck-at fault. • After expanding the circuit to 9Nff = 81, or fewer, time-frames ATPG program calls any given target fault untestable. • Circuit can only be functionally tested by multiple observations. • Functional tests, when simulated, give no fault coverage. Day-2 AM Lecture 7

  16. s - graph F2 F1 Adding Initializing Hardware Initializable modulo-3 counter Z CNT F2 F1 s-a-0 s-a-1 CLR s-a-1 s-a-1 Untestable fault Potentially detectable faults Day-2 AM Lecture 7

  17. Benchmark Circuits Circuit PI PO FF Gates Structure Seq. depth Total faults Detected faults Potentially detected faults Untestable faults Abandoned faults Fault coverage (%) Fault efficiency (%) Max. sequence length Total test vectors Gentest CPU s (Sparc 2) s1494 8 19 6 647 Cyclic -- 1506 1379 2 30 97 91.6 93.4 28 559 19183 s1238 14 14 18 508 Cycle-free 4 1355 1283 0 72 0 94.7 100.0 3 308 15 s1196 14 14 18 529 Cycle-free 4 1242 1239 0 3 0 99.8 100.0 3 313 10 s1488 8 19 6 653 Cyclic -- 1486 1384 2 26 76 93.1 94.8 24 525 19941 Day-2 AM Lecture 7

  18. Summary • Combinational ATPG algorithms are extended: • Time-frame expansion unrolls time as combinational array • Nine-valued logic system • Justification via backward time • Cycle-free circuits: • Require at most dseq+ 1 time-frames • Always initializable • Cyclic circuits: • May need 9Nff time-frames • Circuit must be initializable • Partial scan can make circuit cycle-free • Asynchronous circuits: Not discussed • See,M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer, 2000, Chapter 8. Day-2 AM Lecture 7

  19. Exercise 3: Lecture 7 • Which type of circuit is easier to test? Circle one in each: • Combinational or sequential • Cyclic or cycle-free • Synchronous or asynchronous • What is the maximum number of input vectors that may be needed to initialize a cycle-free circuit with k flip-flops? Day-2 AM Lecture 7

  20. Exercise 3 Answers • Which type of circuit is easier to test? Circle one in each: • Combinational or sequential • Cyclic or cycle-free • Synchronous or asynchronous • What is the maximum number of input vectors that may be needed to initialize a cycle-free circuit with k flip-flops? k vectors. Because that is the maximum sequential depth possible. An example is a k bit shift register. Day-2 AM Lecture 7

More Related