1 / 4

例 已知 x(n)=u(n) 求其 Z 变换表达式。 解

Z 变换. 例 已知 x(n)=u(n) 求其 Z 变换表达式。 解. 由等比数列求和的性质可知,( 6―4 )式的级数在 |z-1|≥1 时是发散的,只有在 |z-1| < 1 时才收敛。这时无穷级数可以用封闭形式表示为. 例 2 求指数序列 x(n)=anu(n) 的 Z 变换。 解 显然指数序列是一个因果序列. 例 ―3 求左边序列 x(n)=-bnu(-n-1)(b < 1) 的 Z 变换。 解 由信号的 Z 变换的定义可知. 若公比 |b -1 z| < 1 ,即 |z| < |b| 时此级数收敛。此时.

Download Presentation

例 已知 x(n)=u(n) 求其 Z 变换表达式。 解

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Z变换 例 已知x(n)=u(n)求其Z变换表达式。 解 由等比数列求和的性质可知,(6―4)式的级数在 |z-1|≥1时是发散的,只有在|z-1|<1时才收敛。这时无穷级数可以用封闭形式表示为

  2. 例2求指数序列x(n)=anu(n)的Z变换。 解 显然指数序列是一个因果序列

  3. 例―3 求左边序列x(n)=-bnu(-n-1)(b<1)的Z变换。 解 由信号的Z变换的定义可知 若公比|b-1 z|<1,即|z|<|b|时此级数收敛。此时

  4. 例4 求信号x(n)=u(n+1)的Z变换及其收敛域。 解 因为u(n)←→ 利用Z变换的移序特性, 有 因为u(n)是一个因果序列,而u(n+1)是非因果序列,所以它的收敛域在无穷远处发生了变化,即删除原有的无穷远点,u(n+1)的Z变换的收敛域为1<|z|<∞。

More Related