180 likes | 479 Views
ИЗКЪЛЧВАНЕ С MDSolids. Въпрос № 14 Изчисляване на критична сила и критично нормално напрежение за центрично натиснати пръти. Веселин Илиев. ИЗКЪЛЧВАНЕ С MDSolids. Изчисляване на критична сила и критично нормално напрежение за центрично натиснати пръти. Примерна задача
E N D
ИЗКЪЛЧВАНЕ С MDSolids Въпрос № 14 Изчисляване на критична сила и критично нормално напрежение за центрично натиснати пръти. Веселин Илиев
ИЗКЪЛЧВАНЕ С MDSolids Изчисляване на критична сила и критично нормално напрежение за центрично натиснати пръти. • Примерна задача • Прът с напречно сечение – фигурата от задача №10, има дължина l=2 mи е закрепен по показания начин. Да се изчислят: • Максималната критична сила, с която може да бъде натиснат пръта без да загуби устойчивост, ако материалът, от който е изработен е линейно-еластичен с модул на еластичност Е = 210 GPa. • Да се направи заключение за валидността на формулата на Ойлер, ако границата на пропорционалност за материала е sp=250 [MPa] и условната граница на пластичност е ss=340 [MPa]. Запознайте се с теоретичните основи на решението тук! Веселин Илиев
Избор на изчислителен модул (геометрични характеристики) Решението протича в следната последователност: Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) Решението протича в следната последователност: 1 3 6 160 12 60 120 2 3 Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) • Задаване на модула на еластичност и пресмятане на характеристиките на сечението Решението протича в следната последователност: 1 3 2 4 Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) • Задаване на модула на еластичност и пресмятане на характеристиките на сечението • Задаване на закрепването Решението протича в следната последователност: 1 2 4 5 6 7 3 Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) • Задаване на модула на еластичност и пресмятане на характеристиките на сечението • Задаване на закрепването • Задаване на граничните напрежения и извършване на пресмятанията Решението протича в следната последователност: 1 2 3 5 4 Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) • Задаване на модула на еластичност и пресмятане на характеристиките на сечението • Задаване на закрепването • Задаване на граничните напрежения и извършване на пресмятанията • Резултати Решението протича в следната последователност: Критична сила Заключение за приложимостта на формулата на Ойлер Форма на загуба на устойчивост Веселин Илиев
Избор на изчислителен модул • Дефиниране на сечението (както в задача №9) • Задаване на модула на еластичност и пресмятане на характеристиките на сечението • Задаване на закрепването • Задаване на граничните напрежения и извършване на пресмятанията • Резултати • Предаване на резултатите След приклюване на работата по задачата (от т.1 до т.5), трябва дасвалите от екранасхемата сокончателнитерезултати, да гизапишете във файл (запредпочитане въвформат JPEG, GIF, PDF или в краен случай – DOC) и да ги изпратитиенапреподавателя поелектронната поща отличния си електроненадрес. Веселин Илиев
Задачи Типът на задачата и данните за нея се избират според последната цифра от факултетния номер (К1) и предпоследната цифра от факултетния номер (К2) както следва: Например за факултетен номер НТ 296-4 се взима основната част \без тирето и цифрата след него/, така че се получава К1=6 (четно) и К2=9 (нечетно) – задача №3
Условие на задачата Задачата се решава с напречно сечение на гредата, показано на следващия кадър За всички варианти при К1=0 се взима К1=10, при К2=0 се взима К2=10
Условие на задачата Очаквам отговорите Ви на адрес veso@uctm.edu При К1=0 се взима К1=10 При К2=0 се взима К2=10 Успешна работа!