580 likes | 593 Views
Learn to analyze neural responses with Dynamic Causal Modeling (DCM) techniques. Explore connectivity structures and model parameters to draw inferences from EEG/ERP data. Discover how different connections influence observed frequency coupling and contextual factors affecting neural populations.
E N D
DCM for evoked responses Ryszard Auksztulewicz SPM for M/EEG course, 2017
? Does network XYZ explain my data better than network XY?Which XYZ connectivity structure best explains my data?Are X & Y linked in a bottom-up, top-down or recurrent fashion?Is my effect driven by extrinsic or intrinsic connections?Which neural populations are affected by contextual factors?Which connections determine observed frequency coupling?How changing a connection/parameter would influence data? context input
The DCM analysis pathway Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
The DCM analysis pathway Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
Data for DCM for ERPs / ERFs • Downsample • Filter (e.g. 1-40Hz) • Epoch • Remove artefacts • Average • Per subject • Grand average • Plausible sources • Literature / a priori • Dipole fitting / 3D source reconstruction
The DCM analysis pathway Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
The DCM analysis pathway ‘Hardwired’ model features Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
Neuronal (source) model Kiebel et al., 2008
NEURAL MASS MODEL Inhib Inter L2/3 Spiny Stell L4 Pyr L5/6 spm_fx_erp
Canonical Microcircuit Model (‘CMC’) Bastos et al. (2012) Pinotsis et al. (2012)
NEURAL MASS MODEL CANONICAL MICROCIRCUIT Pyr Inhib Inter L2/3 xv Spiny Stell Spiny Stell mv L4 Inhib Inter Pyr Pyr L5/6 spm_fx_erp spm_fx_cmc
Canonical Microcircuit Model (‘CMC’) Supra- granular Layer Granular Layer Infra-granular Layer
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Inhibitory Interneurons Superficial Pyramidal Cells Supra-granular Layer Spiny Stellate Cells Granular Layer Infra-granular Layer Deep Pyramidal Cells Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Voltage change rate: f(current) Current change rate: f(voltage,current) Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Voltage change rate: f(current) Current change rate: f(voltage,current) H, τKernels: pre-synaptic inputs -> post-synaptic membrane potentials [ H: max PSP; τ: rate constant ] S Sigmoid operator: PSP -> firing rate David et al., 2006; Pinotsis et al., 2012
Canonical Microcircuit Model (‘CMC’) Supra-granular Layer Granular Layer Infra-granular Layer Pinotsis et al., 2012
The DCM analysis pathway ‘Hardwired’ model features Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
5 4 3 2 1
5 4 3 2 1 Input
5 4 3 2 1 Input
5 4 3 2 1 Input
5 4 3 2 1 Input
Factor 1 5 4 3 2 1 Input
Factor 1 Factor 2 5 4 3 2 1 Input
The DCM analysis pathway Fixed parameters Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
Fitting DCMs to data H. Brown
Fitting DCMs to data H. Brown
Fitting DCMs to data • Check your data H. Brown
Fitting DCMs to data • Check your data • Check your sources H. Brown
OFC OFC A19 IPL A19 IPL V4 V4 Model 1 Fitting DCMs to data • Check your data • Check your sources • Check your model IPL IPL V4 V4 Model 2 H. Brown
Fitting DCMs to data • Check your data • Check your sources • Check your model • Re-run model fitting H. Brown
The DCM analysis pathway Fixed parameters Build model(s) Fit your model parameters to the data Pick the best model Make an inference (conclusion) Collect data
? Does network XYZ explain my data better than network XY?Which XYZ connectivity structure best explains my data?Are X & Y linked in a bottom-up, top-down or recurrent fashion?Is my effect driven by extrinsic or intrinsic connections?Which connections/populations are affected by contextual factors? context input
Example #1: Architecture of MMN Garrido et al., 2008
Example #2: Role of feedback connections Garrido et al., 2007
Example #3: Group differences Boly et al., 2011
Example #4: Factorial design & CMC Attention cf. Feldman & Friston, 2010 FORWARD PREDICTION ERROR L2/3 p x x xx L4 s m mx L5/6 A1 STG BACKWARD PREDICTIONS Bastos et al., Neuron 2012 Auksztulewicz & Friston, 2015
2x2 design: Attended vs unattended Standardvs deviant (Only trials with 2 tones) N=20 Auksztulewicz & Friston, 2015
Expectation Attention Flexible factorial design Thresholded at p<.005 peak-level Corrected at a cluster-level pFWE<.05 Auksztulewicz & Friston, 2015 Contrast estimate A1E1 A1E0 A0E1 A0E0