510 likes | 799 Views
Occlusion Aware Particle Filter Tracker to Handle Complex and Persistent Occlusions using Multiple Feature Fusion. KOUROSH MESHGI. PROGRESS REPORT TOPIC. To: Ishii Lab Members, Dr. Shin- ichi Maeda, Dr. Shigeuki Oba, And Prof. Shin Ishii 9 MAY 2014. TRACKING APPLICATIONS. Entertainment.
E N D
Occlusion Aware Particle Filter Tracker to Handle Complex and Persistent Occlusions using • Multiple Feature Fusion KOUROSHMESHGI PROGRESS REPORT TOPIC To: Ishii Lab Members, Dr. Shin-ichiMaeda, Dr. Shigeuki Oba, And Prof. Shin Ishii 9 MAY 2014
TRACKING APPLICATIONS Entertainment Public Surveillance Robotics Video Indexing Action Recog. Kourosh Meshgi– ISHII LAB - DEC 2013 - Slide 2 MAIN APPLICATIONS
TRACKING CHALLENGES Abrupt Motion Occlusion Illumination Deformation Clutter Varying Scale Kourosh Meshgi– ISHII LAB - DEC 2013 - Slide 3 MAIN CHALLENGES
BAYESIAN TRACKING States: Target Location and Scale • Goal: Define p(Xt|Y1,…,Yt) given p(X1) Observations: Sensory Information Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 4
INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • • PARTICLE FILTER TR.
INPUT IMAGE Frame: t • RGB Domain Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 6
INPUT DEPTH MAP Frame: t • Depth Domain Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 7
SENSORY INFORMATION Frame: t • Sensory Information Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 8
STATE REPRESENTATION & OBSERVATION MODEL Frame: t • State w (x,y) h Observation Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 9
FEATURES Color Texture • Feature Set Edge Shape Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 10
TEMPLATE Frame: 1 • Template f1 … fj … fM Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 11
PARTICLES INITIALIZATION Frame: 1 • Particles Initialized Overlapped Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 12
MOTION MODEL Frame: t → t + 1 • Motion Model Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 13
FEATURE EXTRACTION Frame: t + 1 • Feature Vectors f1 f2 fM … X1,t+1 X2,t+1 … XN,t+1 Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 14
FEATURE FUSION Frame: t ! • Probability of Observation Each Feature Independence Assumption Kourosh Meshgi– ISHII LAB - MAR 2014- Slide 15
PROB. CALCULATION Frame: t + 1 • Particles • Brighter = More Probable Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 16
TARGET ESTIMATION Frame: t + 1 • Feature Vectors Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 17
MODEL UPDATE Frame: t + 1 • New Model • Model Update Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 18
RESAMPLING Frame: t + 1 • Proportional to Probability Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 19
CHALLENGES • • • • • • • • • • • • • • • • • • • • • • • • PARTICLE FILTER TR.
PFT ISSUES • • • • Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 21
APPEARANCE CHANGES • Same Color Objects • Background Clutter • Illumination Change • Shadows, Shades Use Depth! Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 22
MODEL DRIFT PROBLEM • Templates Corrupted! Handle Occlusion! (No Model Update During Them) Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 23
DEFICIENT FEATURE SPACE • * Local Optima of Feature Space • * Feature Noise • * Feature Failures Regularization Non-zero Values Normalization Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 24
PERSISTENT OCCLUSION • Particles Converge to Local Optima / Remains The Same Region Advanced Motion Models (not always feasible) Restart Tracking (slow occlusion recovery) Expand Search Area! Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 25
DYNAMICS… • * The Search is not Directed • * Neither of the Channels have Useful Information • * Particles Should Scatter Away from Last Known Position Occlusion! Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 26
OCCLUSION Update model for target Type of Occlusion is Important Keep memoryvs. Keep focus on the target GENERATIVE MODELS DISCRIMINATIVE MODELS Combine Them! • do not address occlusion explicitly • maintain a large set of hypotheses • computationally expensive • direct occlusion detection • robust against partial & temp occ. • persistent occ. hinder tracking
OCCLUSION TYPES • PTO partial occlusion • SAO self- or articulation occlusion • TFOtemporal full occlusion - shorter than 3 frames • PFO persistent full occlusion • CPOcomplex partial occlusion - including “split and merge” and permanent changes in a key attribute of a part of target • CFO complex full occlusion Kourosh Meshgi– ISHII LAB– MAY 2014 – Slide 28
LITERATURE REVIW [Zhao & Nevatia, 04] Occlusion Indicator: Ratio of FG/BKG [Wu & Nevatia, 07] Handle Occlusion using Appearance Model [de Villiers et al., 12] Switch Tracker in the case of Occlusion [Song & Xiao, 13] Occlusion Indicator: New Peak in HOD or Reduction of the Size of Main Peak Many other papers handle occlusions as the by-product of their novel trackers
SOLUTION • • • • • • • • • • • • • • • • • • • • • • • • OCCLUSION AWARE PFT
Initialization Motion Model Observation Occlusion Flag? Calculate Likelihood NO YES Constant Likelihood Target Estimation PROPOSED MODIFICATION Occlusion Estimation Occlusion Threshold ? > Model Update NO YES Resampling Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 31
OCCLUSION AWARE PARTICLE FILTER FRAMEWORK • Occlusion Flag (for each particle) • Observation Model • No-Occlusion Particles Same as Before • Occlusion-Flagged Particles Uniform Distribution Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 32
TARGET ESTIMATION 1 • Position Estimation of the Target • Occlusion State for the Next Box x 0 1 x a 0 Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 33
UPDATE RULE • Model Update (Separately for each Feature) • Modified Dynamics Model of Particle Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 34
OA-PF DYNAMICS Occlusion! Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 35
OA-PF DYNAMICS GOTCHA! Occlusion! Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 36
OA-PF DYNAMICS • Quick Occlusion Recovery • Low CPE • No Template Corruption • No Attraction to other Object/ Background Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 37
FEATURES • COLOR (HOC) • TEXTURE (LBP) • GRADIENT (HOG) • EDGE (LOG) • DEPTH (HOD) • 2D PROJ. (BETA) • 3D SHAPE (PCL Σ) Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 38
RESULTS • • • • • • • • • • • • • • • • • • • • • • • • & DISCUSSION
DATASET( ) • Princeton Tracking Dataset 5 Validation Video with Ground Truth 95 Evaluation Video Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 40
EXPERIMENT Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 41
CRITERIA I • PASCAL VOC: Overall Performance 1 Success Area Under Curve to 0 1 Overlap Threshold Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 42
RESULTS Success Plot 1 1 Success Rate 1 Overlap Threshold Kourosh Meshgi– ISHII LAB - MAR 2014- Slide 43 1
CRITERIA II • Mean Central Point Error: Localization Success • Mean Scale Adaption Error Estimated Ground Truth Kourosh Meshgi– ISHII LAB– MAY 2014 – Slide 44
RESULTS Center Positioning Error 400 CPE (pixels) 50 Frames
RESULTS Scale Adaptation Error 140 SAE (pixels) 50 Frames
CRITERIA III • FPhappens when a tracker doesn’t realize that the target is occluded. • MIhappens when the target is visible but the tracker fails to track it as if the target is still in an occlusion state • MT the estimated bounding box has nothing in common with ground truth box • FPS execution time in frames per second Kourosh Meshgi– ISHII LAB– MAY 2014 – Slide 47
RESULTS Kourosh Meshgi– ISHII LAB– MAR 2014 – Slide 48
PUBLICATION FINAL REVIEW Kourosh Meshgi– ISHII LAB– MAY 2014 – Slide 49
FUTURE WORKS Kourosh Meshgi– ISHII LAB–MAY 2014 – Slide 50